IDEAS home Printed from https://ideas.repec.org/a/eee/tefoso/v156y2020ics0040162519302380.html
   My bibliography  Save this article

Behavior-based scenario discovery using time series clustering

Author

Listed:
  • Steinmann, Patrick
  • Auping, Willem L.
  • Kwakkel, Jan H.

Abstract

Scenario Discovery is a widely used method in model-based decision support for identifying common input space properties across ensembles of exploratory model runs. For model runs with behavior over time, these properties are identified by reducing each run to a single value, which obscures potentially decision-relevant dynamics. We address the problem of considering dynamics in Scenario Discovery by applying time series clustering to the ensemble of model runs, and then finding the common input properties for each cluster. This separates the input space into multiple scenarios, each corresponding to a distinct model dynamic. Policy interventions can be targeted at different scenarios by analyzing overlap of these subspaces. Our work expands Scenario Discovery by improving consideration of system behavior over time, which is highly relevant for the management of complex nonlinear systems such as ecosystems or technical infrastructure.

Suggested Citation

  • Steinmann, Patrick & Auping, Willem L. & Kwakkel, Jan H., 2020. "Behavior-based scenario discovery using time series clustering," Technological Forecasting and Social Change, Elsevier, vol. 156(C).
  • Handle: RePEc:eee:tefoso:v:156:y:2020:i:c:s0040162519302380
    DOI: 10.1016/j.techfore.2020.120052
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0040162519302380
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.techfore.2020.120052?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Parker, Andrew M. & Srinivasan, Sinduja V. & Lempert, Robert J. & Berry, Sandra H., 2015. "Evaluating simulation-derived scenarios for effective decision support," Technological Forecasting and Social Change, Elsevier, vol. 91(C), pages 64-77.
    2. Benjamin Smith, 2004. "Oil Wealth and Regime Survival in the Developing World, 1960–1999," American Journal of Political Science, John Wiley & Sons, vol. 48(2), pages 232-246, April.
    3. Steve Bankes, 1993. "Exploratory Modeling for Policy Analysis," Operations Research, INFORMS, vol. 41(3), pages 435-449, June.
    4. Kwakkel, Jan H. & Pruyt, Erik, 2013. "Exploratory Modeling and Analysis, an approach for model-based foresight under deep uncertainty," Technological Forecasting and Social Change, Elsevier, vol. 80(3), pages 419-431.
    5. Kunc, Martin & O'Brien, Frances A., 2017. "Exploring the development of a methodology for scenario use: Combining scenario and resource mapping approaches," Technological Forecasting and Social Change, Elsevier, vol. 124(C), pages 150-159.
    6. F. Owen Hoffman & Jana S. Hammonds, 1994. "Propagation of Uncertainty in Risk Assessments: The Need to Distinguish Between Uncertainty Due to Lack of Knowledge and Uncertainty Due to Variability," Risk Analysis, John Wiley & Sons, vol. 14(5), pages 707-712, October.
    7. Julie Rozenberg & Céline Guivarch & Robert Lempert & Stéphane Hallegatte, 2014. "Building SSPs for climate policy analysis: a scenario elicitation methodology to map the space of possible future challenges to mitigation and adaptation," Climatic Change, Springer, vol. 122(3), pages 509-522, February.
    8. Céline Guivarch & Julie Rozenberg & Vanessa Schweizer, 2016. "The diversity of socio-economic pathways and CO2 emissions scenarios: Insights from the investigation of a scenarios database," Post-Print halshs-01292901, HAL.
    9. Robert J. Lempert & David G. Groves & Steven W. Popper & Steve C. Bankes, 2006. "A General, Analytic Method for Generating Robust Strategies and Narrative Scenarios," Management Science, INFORMS, vol. 52(4), pages 514-528, April.
    10. Kwakkel, Jan H. & Auping, Willem L. & Pruyt, Erik, 2013. "Dynamic scenario discovery under deep uncertainty: The future of copper," Technological Forecasting and Social Change, Elsevier, vol. 80(4), pages 789-800.
    11. Dirk Helbing, 2013. "Globally networked risks and how to respond," Nature, Nature, vol. 497(7447), pages 51-59, May.
    12. McJeon, Haewon C. & Clarke, Leon & Kyle, Page & Wise, Marshall & Hackbarth, Andrew & Bryant, Benjamin P. & Lempert, Robert J., 2011. "Technology interactions among low-carbon energy technologies: What can we learn from a large number of scenarios?," Energy Economics, Elsevier, vol. 33(4), pages 619-631, July.
    13. Hamarat, Caner & Kwakkel, Jan H. & Pruyt, Erik, 2013. "Adaptive Robust Design under deep uncertainty," Technological Forecasting and Social Change, Elsevier, vol. 80(3), pages 408-418.
    14. Elmar Kriegler & Jae Edmonds & Stéphane Hallegatte & Kristie Ebi & Tom Kram & Keywan Riahi & Harald Winkler & Detlef Vuuren, 2014. "A new scenario framework for climate change research: the concept of shared climate policy assumptions," Climatic Change, Springer, vol. 122(3), pages 401-414, February.
    15. Sebastiaan Greeven & Oscar Kraan & Emile Chappin & Jan H. Kwakkel, 2016. "The Emergence of Climate Change Mitigation Action by Society: An Agent-Based Scenario Discovery Study," Journal of Artificial Societies and Social Simulation, Journal of Artificial Societies and Social Simulation, vol. 19(3), pages 1-9.
    16. Sterman, John., 1994. "Learning in and about complex systems," Working papers 3660-94., Massachusetts Institute of Technology (MIT), Sloan School of Management.
    17. Erik Pruyt & Jan H. Kwakkel, 2014. "Radicalization under deep uncertainty: a multi-model exploration of activism, extremism, and terrorism," System Dynamics Review, System Dynamics Society, vol. 30(1-2), pages 1-28, January.
    18. Brian O’Neill & Elmar Kriegler & Keywan Riahi & Kristie Ebi & Stephane Hallegatte & Timothy Carter & Ritu Mathur & Detlef Vuuren, 2014. "A new scenario framework for climate change research: the concept of shared socioeconomic pathways," Climatic Change, Springer, vol. 122(3), pages 387-400, February.
    19. Corduas, Marcella & Piccolo, Domenico, 2008. "Time series clustering and classification by the autoregressive metric," Computational Statistics & Data Analysis, Elsevier, vol. 52(4), pages 1860-1872, January.
    20. Auping, Willem L. & Pruyt, Erik & de Jong, Sijbren & Kwakkel, Jan H., 2016. "The geopolitical impact of the shale revolution: Exploring consequences on energy prices and rentier states," Energy Policy, Elsevier, vol. 98(C), pages 390-399.
    21. Montero, Pablo & Vilar, José A., 2014. "TSclust: An R Package for Time Series Clustering," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 62(i01).
    22. Jan Kwakkel & Marjolijn Haasnoot & Warren Walker, 2015. "Developing dynamic adaptive policy pathways: a computer-assisted approach for developing adaptive strategies for a deeply uncertain world," Climatic Change, Springer, vol. 132(3), pages 373-386, October.
    23. Erik Pruyt & Tushith Islam, 2015. "On generating and exploring the behavior space of complex models," System Dynamics Review, System Dynamics Society, vol. 31(4), pages 220-249, October.
    24. Moallemi, Enayat A. & de Haan, Fjalar & Kwakkel, Jan & Aye, Lu, 2017. "Narrative-informed exploratory analysis of energy transition pathways: A case study of India's electricity sector," Energy Policy, Elsevier, vol. 110(C), pages 271-287.
    25. Kwakkel, J.H. & Cunningham, S.C., 2016. "Improving scenario discovery by bagging random boxes," Technological Forecasting and Social Change, Elsevier, vol. 111(C), pages 124-134.
    26. Willis, Graham & Cave, Siôn & Kunc, Martin, 2018. "Strategic workforce planning in healthcare: A multi-methodology approach," European Journal of Operational Research, Elsevier, vol. 267(1), pages 250-263.
    27. Guus A ten Broeke & George A K van Voorn & Arend Ligtenberg & Jaap Molenaar, 2017. "Resilience through adaptation," PLOS ONE, Public Library of Science, vol. 12(2), pages 1-21, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Student, Jillian & Kramer, Mark R. & Steinmann, Patrick, 2020. "Simulating emerging coastal tourism vulnerabilities: an agent-based modelling approach," Annals of Tourism Research, Elsevier, vol. 85(C).
    2. Giuseppe Ciaburro & Gino Iannace, 2021. "Machine Learning-Based Algorithms to Knowledge Extraction from Time Series Data: A Review," Data, MDPI, vol. 6(6), pages 1-30, May.
    3. Jan Kwakkel & Willem Auping, 2021. "Reaction: A commentary on Lustick and Tetlock (2021)," Futures & Foresight Science, John Wiley & Sons, vol. 3(2), June.
    4. Kahagalage, Sanath Darshana & Turan, Hasan Hüseyin & Elsawah, Sondoss & Gary, Michael Shayne, 2024. "Exploratory modelling and analysis to support decision-making under deep uncertainty: A case study from defence resource planning and asset management," Technological Forecasting and Social Change, Elsevier, vol. 200(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jan H. Kwakkel, 2019. "A generalized many‐objective optimization approach for scenario discovery," Futures & Foresight Science, John Wiley & Sons, vol. 1(2), June.
    2. Kwakkel, J.H. & Cunningham, S.C., 2016. "Improving scenario discovery by bagging random boxes," Technological Forecasting and Social Change, Elsevier, vol. 111(C), pages 124-134.
    3. Hidayatno, Akhmad & Jafino, Bramka Arga & Setiawan, Andri D. & Purwanto, Widodo Wahyu, 2020. "When and why does transition fail? A model-based identification of adoption barriers and policy vulnerabilities for transition to natural gas vehicles," Energy Policy, Elsevier, vol. 138(C).
    4. Céline Guivarch & Julie Rozenberg & Vanessa Schweizer, 2016. "The diversity of socio-economic pathways and CO2 emissions scenarios: Insights from the investigation of a scenarios database," Post-Print halshs-01292901, HAL.
    5. Moallemi, Enayat A. & de Haan, Fjalar & Kwakkel, Jan & Aye, Lu, 2017. "Narrative-informed exploratory analysis of energy transition pathways: A case study of India's electricity sector," Energy Policy, Elsevier, vol. 110(C), pages 271-287.
    6. Erik Pruyt & Jan H. Kwakkel, 2014. "Radicalization under deep uncertainty: a multi-model exploration of activism, extremism, and terrorism," System Dynamics Review, System Dynamics Society, vol. 30(1-2), pages 1-28, January.
    7. Auping, Willem L. & Pruyt, Erik & de Jong, Sijbren & Kwakkel, Jan H., 2016. "The geopolitical impact of the shale revolution: Exploring consequences on energy prices and rentier states," Energy Policy, Elsevier, vol. 98(C), pages 390-399.
    8. Parker, Andrew M. & Srinivasan, Sinduja V. & Lempert, Robert J. & Berry, Sandra H., 2015. "Evaluating simulation-derived scenarios for effective decision support," Technological Forecasting and Social Change, Elsevier, vol. 91(C), pages 64-77.
    9. Eker, Sibel & van Daalen, Els, 2015. "A model-based analysis of biomethane production in the Netherlands and the effectiveness of the subsidization policy under uncertainty," Energy Policy, Elsevier, vol. 82(C), pages 178-196.
    10. Moallemi, Enayat A. & Elsawah, Sondoss & Ryan, Michael J., 2020. "Robust decision making and Epoch–Era analysis: A comparison of two robustness frameworks for decision-making under uncertainty," Technological Forecasting and Social Change, Elsevier, vol. 151(C).
    11. Moallemi, Enayat A. & Elsawah, Sondoss & Ryan, Michael J., 2020. "Strengthening ‘good’ modelling practices in robust decision support: A reporting guideline for combining multiple model-based methods," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 175(C), pages 3-24.
    12. Erik Pruyt & Tushith Islam, 2015. "On generating and exploring the behavior space of complex models," System Dynamics Review, System Dynamics Society, vol. 31(4), pages 220-249, October.
    13. Jan Kwakkel & Willem Auping, 2021. "Reaction: A commentary on Lustick and Tetlock (2021)," Futures & Foresight Science, John Wiley & Sons, vol. 3(2), June.
    14. Luciano Raso & Jan Kwakkel & Jos Timmermans, 2019. "Assessing the Capacity of Adaptive Policy Pathways to Adapt on Time by Mapping Trigger Values to Their Outcomes," Sustainability, MDPI, vol. 11(6), pages 1-16, March.
    15. Luciano Raso & Jan Kwakkel & Jos Timmermans & Geremy Panthou, 2019. "How to evaluate a monitoring system for adaptive policies: criteria for signposts selection and their model-based evaluation," Climatic Change, Springer, vol. 153(1), pages 267-283, March.
    16. Robert Lempert, 2013. "Scenarios that illuminate vulnerabilities and robust responses," Climatic Change, Springer, vol. 117(4), pages 627-646, April.
    17. Densing, M. & Panos, E. & Hirschberg, S., 2016. "Meta-analysis of energy scenario studies: Example of electricity scenarios for Switzerland," Energy, Elsevier, vol. 109(C), pages 998-1015.
    18. Trutnevyte, Evelina & McDowall, Will & Tomei, Julia & Keppo, Ilkka, 2016. "Energy scenario choices: Insights from a retrospective review of UK energy futures," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 326-337.
    19. Jan H. Kwakkel & Erik Pruyt, 2015. "Using System Dynamics for Grand Challenges: The ESDMA Approach," Systems Research and Behavioral Science, Wiley Blackwell, vol. 32(3), pages 358-375, May.
    20. Evelina Trutnevyte & Céline Guivarch & Robert Lempert & Neil Strachan, 2016. "Reinvigorating the scenario technique to expand uncertainty consideration," Climatic Change, Springer, vol. 135(3), pages 373-379, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:tefoso:v:156:y:2020:i:c:s0040162519302380. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.sciencedirect.com/science/journal/00401625 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.