IDEAS home Printed from https://ideas.repec.org/a/wsi/ijtafx/v11y2008i05ns0219024908004907.html
   My bibliography  Save this article

Multi-Factor Jump-Diffusion Models Of Electricity Prices

Author

Listed:
  • THILO MEYER-BRANDIS

    (Center of Mathematics for Applications, University of Oslo, P. O. Box 1053, Blindern, Norway)

  • PETER TANKOV

    (Laboratoire de Probabilités et Modèles Aléatoires, 13 Université Paris-Diderot (Paris 7), Case 7012, 2 Place Jussieu, 75251 Paris Cedex 05, France)

Abstract

The recent deregulation of electricity markets has led to the creation of energy exchanges, where the electricity is freely traded. In this paper, we study the most salient statistical features of electricity prices with a particular attention to the European energy exchanges. These features can be adequately reproduced by the sum-OU model: a model representing the price as a sum of Lévy-driven Ornstein–Uhlenbeck (OU) processes. We present a new method for filtering out the different OU components and develop a statistical procedure for estimating the sum-OU model from data.

Suggested Citation

  • Thilo Meyer-Brandis & Peter Tankov, 2008. "Multi-Factor Jump-Diffusion Models Of Electricity Prices," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 11(05), pages 503-528.
  • Handle: RePEc:wsi:ijtafx:v:11:y:2008:i:05:n:s0219024908004907
    DOI: 10.1142/S0219024908004907
    as

    Download full text from publisher

    File URL: http://www.worldscientific.com/doi/abs/10.1142/S0219024908004907
    Download Restriction: Access to full text is restricted to subscribers

    File URL: https://libkey.io/10.1142/S0219024908004907?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Rafal Weron, 2005. "Heavy tails and electricity prices," HSC Research Reports HSC/05/02, Hugo Steinhaus Center, Wroclaw University of Science and Technology.
    2. Villaplana Conde, Pablo, 2003. "Pricing power derivatives: a two-factor jump-diffusion approach," DEE - Working Papers. Business Economics. WB wb031805, Universidad Carlos III de Madrid. Departamento de Economía de la Empresa.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Thomas Deschatre & Olivier F'eron & Pierre Gruet, 2021. "A survey of electricity spot and futures price models for risk management applications," Papers 2103.16918, arXiv.org, revised Jul 2021.
    2. Weron, Rafal & Misiorek, Adam, 2007. "Heavy tails and electricity prices: Do time series models with non-Gaussian noise forecast better than their Gaussian counterparts?," MPRA Paper 2292, University Library of Munich, Germany, revised Oct 2007.
    3. Jacobs, Kris & Li, Yu & Pirrong, Craig, 2022. "Supply, demand, and risk premiums in electricity markets," Journal of Banking & Finance, Elsevier, vol. 135(C).
    4. Max F. Schöne & Stefan Spinler, 2017. "A four-factor stochastic volatility model of commodity prices," Review of Derivatives Research, Springer, vol. 20(2), pages 135-165, July.
    5. Weron, Rafal, 2008. "Market price of risk implied by Asian-style electricity options and futures," Energy Economics, Elsevier, vol. 30(3), pages 1098-1115, May.
    6. Kanamura, Takashi & O[combining macron]hashi, Kazuhiko, 2008. "On transition probabilities of regime switching in electricity prices," Energy Economics, Elsevier, vol. 30(3), pages 1158-1172, May.
    7. Shao, Chengwu & Bhar, Ramaprasad & Colwell, David B., 2015. "A multi-factor model with time-varying and seasonal risk premiums for the natural gas market," Energy Economics, Elsevier, vol. 50(C), pages 207-214.
    8. Palzer, Andreas & Westner, Günther & Madlener, Reinhard, 2013. "Evaluation of different hedging strategies for commodity price risks of industrial cogeneration plants," Energy Policy, Elsevier, vol. 59(C), pages 143-160.
    9. Islyaev, Suren & Date, Paresh, 2015. "Electricity futures price models: Calibration and forecasting," European Journal of Operational Research, Elsevier, vol. 247(1), pages 144-154.
    10. Jan Seifert & Marliese Uhrig-Homburg, 2007. "Modelling jumps in electricity prices: theory and empirical evidence," Review of Derivatives Research, Springer, vol. 10(1), pages 59-85, January.
    11. Guo, Zi-Yi, 2017. "Models with Short-Term Variations and Long-Term Dynamics in Risk Management of Commodity Derivatives," EconStor Preprints 167619, ZBW - Leibniz Information Centre for Economics.
    12. Moreno, Manuel & Serrano, Pedro & Stute, Winfried, 2011. "Statistical properties and economic implications of jump-diffusion processes with shot-noise effects," European Journal of Operational Research, Elsevier, vol. 214(3), pages 656-664, November.
    13. Christian Laudag'e & Florian Aichinger & Sascha Desmettre, 2023. "A Comparative Study of Factor Models for Different Periods of the Electricity Spot Price Market," Papers 2306.07731, arXiv.org, revised Apr 2024.
    14. John Crosby, 2008. "A multi-factor jump-diffusion model for commodities," Quantitative Finance, Taylor & Francis Journals, vol. 8(2), pages 181-200.
    15. Luis M. Abadie, 2021. "Energy Market Prices in Times of COVID-19: The Case of Electricity and Natural Gas in Spain," Energies, MDPI, vol. 14(6), pages 1-17, March.
    16. Radu Porumb & Petru Postolache & George Serițan & Ramona Vatu & Oana Ceaki, 2013. "Load profiles analysis for electricity market," Computational Methods in Social Sciences (CMSS), "Nicolae Titulescu" University of Bucharest, Faculty of Economic Sciences, vol. 1(2), pages 30-38, December.
    17. Lisi, Francesco & Nan, Fany, 2014. "Component estimation for electricity prices: Procedures and comparisons," Energy Economics, Elsevier, vol. 44(C), pages 143-159.
    18. Sandro Sapio, 2012. "Modeling the distribution of day-ahead electricity returns: a comparison," Quantitative Finance, Taylor & Francis Journals, vol. 12(12), pages 1935-1949, December.
    19. Mari, Carlo, 2006. "Regime-switching characterization of electricity prices dynamics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 371(2), pages 552-564.
    20. Frestad, Dennis, 2008. "Common and unique factors influencing daily swap returns in the Nordic electricity market, 1997-2005," Energy Economics, Elsevier, vol. 30(3), pages 1081-1097, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wsi:ijtafx:v:11:y:2008:i:05:n:s0219024908004907. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Tai Tone Lim (email available below). General contact details of provider: http://www.worldscinet.com/ijtaf/ijtaf.shtml .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.