IDEAS home Printed from https://ideas.repec.org/a/gam/jagris/v15y2024i1p76-d1557961.html
   My bibliography  Save this article

Mulching Practice Regulates the Soil Hydrothermal Regime to Improve Crop Productivity in the Rainfed Agroecosystem of the Loess Plateau in China

Author

Listed:
  • Fanxiang Han

    (School of Environment and Urban Construction, Lanzhou City University, Lanzhou 730070, China)

  • Yuanhong Zhang

    (College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China)

  • Lei Chang

    (College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China
    State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China)

  • Yuwei Chai

    (College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China)

  • Zhengyu Bao

    (College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China)

  • Hongbo Cheng

    (College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China)

  • Shouxi Chai

    (College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China
    State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China)

  • Fangguo Chang

    (College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China)

  • Guohua Chang

    (School of Environment and Urban Construction, Lanzhou City University, Lanzhou 730070, China)

  • Ruiqi Yang

    (School of Environment and Urban Construction, Lanzhou City University, Lanzhou 730070, China)

Abstract

Mulching practices have demonstrated the potential to increase crop yields and resource utilization efficiency. However, the response of different crops with various growth stages to different mulching practices remains unclear, particularly in the rainfed agroecosystem. Therefore, a two-year field experiment (2013–2015) of different crops (wheat, maize, and potato) was conducted to evaluate the effects of three different mulching treatments: straw strip mulching (SM), plastic film mulching (PM), and conventional planting without mulching as the control (CK), on soil moisture and temperature, evapotranspiration (ET), water use efficiency (WUE), crop yield and economic benefits on the Loess Plateau. The results indicated that both mulching practices significantly increased the soil water content (SM: 4.3% and PM: 3.6%) compared to CK. However, the effects on soil temperature varied between mulching practices, PM increased soil temperature by 4.9% compared to CK, while SM decreased it by 6.3%. The improved soil hydrothermal conditions, characterized by favorable temperatures and higher soil water status would lead to a higher crop daily growth rate (5.3–49.8%), as well as greater dry matter accumulation (4.7–36.7%). Furthermore, mulching practice (SM and PM) has a significant influence on crop yield and its components of various crops, as well as WUE. The mean grain yield of SM and PM was, respectively, increased by 11.4% and 27.1% for winter wheat, compared to CK, 1.8% and 24.3% for spring maize, and 23.0% and 13.9% for potato, respectively. Compared to CK, PM yielded a higher net economic benefit and WUE for winter wheat and spring maize, while SM presented the best economic benefit and WUE for potato. In conclusion, a comprehensive analysis of crop yield, economic benefits, and resource utilization efficiency suggests that straw strip mulching for potato is a more sustainable environmentally friendly mulching practice, recommended for rainfed farming systems on the Loess Plateau and areas with similar climatic conditions.

Suggested Citation

  • Fanxiang Han & Yuanhong Zhang & Lei Chang & Yuwei Chai & Zhengyu Bao & Hongbo Cheng & Shouxi Chai & Fangguo Chang & Guohua Chang & Ruiqi Yang, 2024. "Mulching Practice Regulates the Soil Hydrothermal Regime to Improve Crop Productivity in the Rainfed Agroecosystem of the Loess Plateau in China," Agriculture, MDPI, vol. 15(1), pages 1-20, December.
  • Handle: RePEc:gam:jagris:v:15:y:2024:i:1:p:76-:d:1557961
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2077-0472/15/1/76/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2077-0472/15/1/76/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Dong, Qin’ge & Yang, Yuchen & Yu, Kun & Feng, Hao, 2018. "Effects of straw mulching and plastic film mulching on improving soil organic carbon and nitrogen fractions, crop yield and water use efficiency in the Loess Plateau, China," Agricultural Water Management, Elsevier, vol. 201(C), pages 133-143.
    2. Chen, Yuzhang & Chai, Shouxi & Tian, Huihui & Chai, Yuwei & Li, Yawei & Chang, Lei & Cheng, Hongbo, 2019. "Straw strips mulch on furrows improves water use efficiency and yield of potato in a rainfed semiarid area," Agricultural Water Management, Elsevier, vol. 211(C), pages 142-151.
    3. Wang, Jun & Ghimire, Rajan & Fu, Xin & Sainju, Upendra M. & Liu, Wenzhao, 2018. "Straw mulching increases precipitation storage rather than water use efficiency and dryland winter wheat yield," Agricultural Water Management, Elsevier, vol. 206(C), pages 95-101.
    4. Ren, Xiaolong & Jia, Zhikuan & Chen, Xiaoli, 2008. "Rainfall concentration for increasing corn production under semiarid climate," Agricultural Water Management, Elsevier, vol. 95(12), pages 1293-1302, December.
    5. Li, Rui & Chai, Shouxi & Chai, Yuwei & Li, Yawei & Lan, Xuemei & Ma, Jiantao & Cheng, Hongbo & Chang, Lei, 2021. "Mulching optimizes water consumption characteristics and improves crop water productivity on the semi-arid Loess Plateau of China," Agricultural Water Management, Elsevier, vol. 254(C).
    6. Peng, Zhengkai & Wang, Linlin & Xie, Junhong & Li, Lingling & Coulter, Jeffrey A. & Zhang, Renzhi & Luo, Zhuzhu & Cai, Liqun & Carberry, Peter & Whitbread, Anthony, 2020. "Conservation tillage increases yield and precipitation use efficiency of wheat on the semi-arid Loess Plateau of China," Agricultural Water Management, Elsevier, vol. 231(C).
    7. Akhtar, Kashif & Wang, Weiyu & Khan, Ahmad & Ren, Guangxin & Afridi, Muhammad Zahir & Feng, Yongzhong & Yang, Gaihe, 2019. "Wheat straw mulching offset soil moisture deficient for improving physiological and growth performance of summer sown soybean," Agricultural Water Management, Elsevier, vol. 211(C), pages 16-25.
    8. Zhang, Yanqun & Wang, Jiandong & Gong, Shihong & Xu, Di & Mo, Yan & Zhang, Baozhong, 2021. "Straw mulching improves soil water content, increases flag leaf photosynthetic parameters and maintaines the yield of winter wheat with different irrigation amounts," Agricultural Water Management, Elsevier, vol. 249(C).
    9. Bu, Ling-duo & Liu, Jian-liang & Zhu, Lin & Luo, Sha-sha & Chen, Xin-ping & Li, Shi-qing & Lee Hill, Robert & Zhao, Ying, 2013. "The effects of mulching on maize growth, yield and water use in a semi-arid region," Agricultural Water Management, Elsevier, vol. 123(C), pages 71-78.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xuemei Lan & Shouxi Chai & Jeffrey A. Coulter & Hongbo Cheng & Lei Chang & Caixia Huang & Rui Li & Yuwei Chai & Yawei Li & Jiantao Ma & Li Li, 2020. "Maize Straw Strip Mulching as a Replacement for Plastic Film Mulching in Maize Production in a Semiarid Region," Sustainability, MDPI, vol. 12(15), pages 1-26, August.
    2. Li, Yue & Chen, Hao & Feng, Hao & Dong, Qin’ge & Wu, Wenjie & Zou, Yufeng & Chau, Henry Wai & Siddique, Kadambot H.M., 2020. "Influence of straw incorporation on soil water utilization and summer maize productivity: A five-year field study on the Loess Plateau of China," Agricultural Water Management, Elsevier, vol. 233(C).
    3. Lv, Shenqiang & Li, Jia & Yang, Zeyu & Yang, Ting & Li, Huitong & Wang, Xiaofei & Peng, Yi & Zhou, Chunju & Wang, Linquan & Abdo, Ahmed I., 2023. "The field mulching could improve sustainability of spring maize production on the Loess Plateau," Agricultural Water Management, Elsevier, vol. 279(C).
    4. Duan, Chenxiao & Chen, Guangjie & Hu, Yajin & Wu, Shufang & Feng, Hao & Dong, Qin’ge, 2021. "Alternating wide ridges and narrow furrows with film mulching improves soil hydrothermal conditions and maize water use efficiency in dry sub-humid regions," Agricultural Water Management, Elsevier, vol. 245(C).
    5. Hu, Yajin & Ma, Penghui & Duan, Chenxiao & Wu, Shufang & Feng, Hao & Zou, Yufeng, 2020. "Black plastic film combined with straw mulching delays senescence and increases summer maize yield in northwest China," Agricultural Water Management, Elsevier, vol. 231(C).
    6. Gao, Haihe & Yan, Changrong & Liu, Qin & Li, Zhen & Yang, Xiao & Qi, Ruimin, 2019. "Exploring optimal soil mulching to enhance yield and water use efficiency in maize cropping in China: A meta-analysis," Agricultural Water Management, Elsevier, vol. 225(C).
    7. Sunling, Yang & Shahzad, Ali & Wang, Meng & Xi, Yueling & Shaik, Mohammed Rafi & Khan, Mujeeb, 2024. "Urease and nitrification inhibitors with drip fertigation strategies to mitigate global warming potential and improve water-nitrogen efficiency of maize under semi-arid regions," Agricultural Water Management, Elsevier, vol. 295(C).
    8. Ding, Jinli & Wu, Jicheng & Ding, Dianyuan & Yang, Yonghui & Gao, Cuimin & Hu, Wei, 2021. "Effects of tillage and straw mulching on the crop productivity and hydrothermal resource utilization in a winter wheat-summer maize rotation system," Agricultural Water Management, Elsevier, vol. 254(C).
    9. Zhao, Xiao & Gu, Xiaobo & Yang, Zhichao & Li, Yuannong & Zhang, Li & Zhou, Jiaming, 2022. "Effects of soil preparation and mulching practices together with different urea applications on the water and nitrogen use of winter wheat in semi-humid and drought-prone areas," Agricultural Water Management, Elsevier, vol. 263(C).
    10. Linlin Ye & Yuanxiao Xu & Guofeng Zhu & Wenhao Zhang & Yinying Jiao, 2023. "Effects of Different Mulch Types on Farmland Soil Moisture in an Artificial Oasis Area," Land, MDPI, vol. 13(1), pages 1-17, December.
    11. Quan, Hao & Wu, Lihong & Ding, Dianyuan & Yang, Zhenting & Wang, Naijiang & Chen, Guangjie & Li, Cheng & Dong, Qin'ge & Feng, Hao & Zhang, Tibin & Siddique, Kadambot H.M., 2022. "Interaction between soil water and fertilizer utilization on maize under plastic mulching in an arid irrigation region of China," Agricultural Water Management, Elsevier, vol. 265(C).
    12. Hu, Yajin & Ma, Penghui & Wu, Shufang & Sun, Benhua & Feng, Hao & Pan, Xiaolian & Zhang, Binbin & Chen, Guangjie & Duan, Chenxiao & Lei, Qi & Siddique, Kadambot H.M. & Liu, Boyang, 2020. "Spatial-temporal distribution of winter wheat (Triticum aestivum L.) roots and water use efficiency under ridge–furrow dual mulching," Agricultural Water Management, Elsevier, vol. 240(C).
    13. Zhang, Jinxia & Du, Liangliang & Xing, Zisheng & Zhang, Rui & Li, Fuqiang & Zhong, Tao & Ren, Fangfang & Yin, Meng & Ding, Lin & Liu, Xingrong, 2023. "Effects of dual mulching with wheat straw and plastic film under three irrigation regimes on soil nutrients and growth of edible sunflower," Agricultural Water Management, Elsevier, vol. 288(C).
    14. Zheng, Jing & Fan, Junliang & Zhou, Minghua & Zhang, Fucang & Liao, Zhenqi & Lai, Zhenlin & Yan, Shicheng & Guo, Jinjin & Li, Zhijun & Xiang, Youzhen, 2022. "Ridge-furrow plastic film mulching enhances grain yield and yield stability of rainfed maize by improving resources capture and use efficiency in a semi-humid drought-prone region," Agricultural Water Management, Elsevier, vol. 269(C).
    15. Feng, Yu & Hao, Weiping & Gao, Lili & Li, Haoru & Gong, Daozhi & Cui, Ningbo, 2019. "Comparison of maize water consumption at different scales between mulched and non-mulched croplands," Agricultural Water Management, Elsevier, vol. 216(C), pages 315-324.
    16. Li, Yue & Feng, Hao & Wu, Wenjie & Jiang, Yu & Sun, Jian & Zhang, Yuefang & Cheng, Hui & Li, Cheng & Dong, Qin’ge & Siddique, Kadambot H.M. & Chen, Ji, 2022. "Decreased greenhouse gas intensity of winter wheat production under plastic film mulching in semi-arid areas," Agricultural Water Management, Elsevier, vol. 274(C).
    17. Liu, Xiaoli & Wang, Yandong & Yan, Xiaoqun & Hou, Huizhi & Liu, Pei & Cai, Tie & Zhang, Peng & Jia, Zhikuan & Ren, Xiaolong & Chen, Xiaoli, 2020. "Appropriate ridge-furrow ratio can enhance crop production and resource use efficiency by improving soil moisture and thermal condition in a semi-arid region," Agricultural Water Management, Elsevier, vol. 240(C).
    18. Li, Yue & Chen, Ji & Feng, Hao & Dong, Qin’ge & Siddique, Kadambot H.M., 2021. "Responses of canopy characteristics and water use efficiency to ammoniated straw incorporation for summer maize (Zea mays L.) in the Loess Plateau, China," Agricultural Water Management, Elsevier, vol. 254(C).
    19. Wu, Bingyan & Ma, Dengke & Shi, Yu & Zuo, Guanqiang & Chang, Feng & Sun, Mengqing & Yin, Lina & Wang, Shiwen, 2024. "Optimizing tillage practice based on water supply during the growing season in wheat and maize production in northern China," Agricultural Water Management, Elsevier, vol. 300(C).
    20. Han, Xuyang & Feng, Yu & Zhao, Jie & Ren, Aixia & Lin, Wen & Sun, Min & Gao, Zhiqiang, 2022. "Hydrothermal conditions impact yield, yield gap and water use efficiency of dryland wheat under different mulching practice in the Loess Plateau," Agricultural Water Management, Elsevier, vol. 264(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jagris:v:15:y:2024:i:1:p:76-:d:1557961. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.