Decreased greenhouse gas intensity of winter wheat production under plastic film mulching in semi-arid areas
Author
Abstract
Suggested Citation
DOI: 10.1016/j.agwat.2022.107941
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Dong, Qin’ge & Yang, Yuchen & Yu, Kun & Feng, Hao, 2018. "Effects of straw mulching and plastic film mulching on improving soil organic carbon and nitrogen fractions, crop yield and water use efficiency in the Loess Plateau, China," Agricultural Water Management, Elsevier, vol. 201(C), pages 133-143.
- Li, S.X. & Wang, Z.H. & Li, S.Q. & Gao, Y.J. & Tian, X.H., 2013. "Effect of plastic sheet mulch, wheat straw mulch, and maize growth on water loss by evaporation in dryland areas of China," Agricultural Water Management, Elsevier, vol. 116(C), pages 39-49.
- Lisson, S.N. & Tarbath, M. & Corkrey, R. & Pinkard, E.A. & Laycock, B. & Howden, S.M. & Botwright Acuña, T. & Makin, A., 2016. "Ambient climate and soil effects on the headspace under clear mulch film," Agricultural Systems, Elsevier, vol. 142(C), pages 41-50.
- Kees Jan van Groenigen & Chris van Kessel & Bruce A. Hungate, 2013. "Increased greenhouse-gas intensity of rice production under future atmospheric conditions," Nature Climate Change, Nature, vol. 3(3), pages 288-291, March.
- Junji Yuan & Jian Xiang & Deyan Liu & Hojeong Kang & Tiehu He & Sunghyun Kim & Yongxin Lin & Chris Freeman & Weixin Ding, 2019. "Rapid growth in greenhouse gas emissions from the adoption of industrial-scale aquaculture," Nature Climate Change, Nature, vol. 9(4), pages 318-322, April.
- Li, Yue & Chen, Ji & Feng, Hao & Dong, Qin’ge & Siddique, Kadambot H.M., 2021. "Responses of canopy characteristics and water use efficiency to ammoniated straw incorporation for summer maize (Zea mays L.) in the Loess Plateau, China," Agricultural Water Management, Elsevier, vol. 254(C).
- Xie, Zhong-kui & Wang, Ya-jun & Li, Feng-min, 2005. "Effect of plastic mulching on soil water use and spring wheat yield in arid region of northwest China," Agricultural Water Management, Elsevier, vol. 75(1), pages 71-83, July.
- Liu, Yi & Li, Shiqing & Chen, Fang & Yang, Shenjiao & Chen, Xinping, 2010. "Soil water dynamics and water use efficiency in spring maize (Zea mays L.) fields subjected to different water management practices on the Loess Plateau, China," Agricultural Water Management, Elsevier, vol. 97(5), pages 769-775, May.
- Peng, Zhengkai & Wang, Linlin & Xie, Junhong & Li, Lingling & Coulter, Jeffrey A. & Zhang, Renzhi & Luo, Zhuzhu & Cai, Liqun & Carberry, Peter & Whitbread, Anthony, 2020. "Conservation tillage increases yield and precipitation use efficiency of wheat on the semi-arid Loess Plateau of China," Agricultural Water Management, Elsevier, vol. 231(C).
- Daozhi Gong & Weiping Hao & Xurong Mei & Xiang Gao & Qi Liu & Kelly Caylor, 2015. "Warmer and Wetter Soil Stimulates Assimilation More than Respiration in Rainfed Agricultural Ecosystem on the China Loess Plateau: The Role of Partial Plastic Film Mulching Tillage," PLOS ONE, Public Library of Science, vol. 10(8), pages 1-20, August.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Thongsouk Sompouviset & Yanting Ma & Eakkarin Sukkaew & Zhaoxia Zheng & Ai Zhang & Wei Zheng & Ziyan Li & Bingnian Zhai, 2023. "The Effects of Plastic Mulching Combined with Different Fertilizer Applications on Greenhouse Gas Emissions and Intensity, and Apple Yield in Northwestern China," Agriculture, MDPI, vol. 13(6), pages 1-23, June.
- Zhang, Binbin & Yan, Sihui & Li, Bin & Wu, Shufang & Feng, Hao & Gao, Xiaodong & Song, Xiaolin & Siddique, Kadambot H.M., 2023. "Combining organic and chemical fertilizer plus water-saving system reduces environmental impacts and improves apple yield in rainfed apple orchards," Agricultural Water Management, Elsevier, vol. 288(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Thidar, Myint & Gong, Daozhi & Mei, Xurong & Gao, Lili & Li, Haoru & Hao, Weiping & Gu, Fengxue, 2020. "Mulching improved soil water, root distribution and yield of maize in the Loess Plateau of Northwest China," Agricultural Water Management, Elsevier, vol. 241(C).
- Hu, Yajin & Ma, Penghui & Duan, Chenxiao & Wu, Shufang & Feng, Hao & Zou, Yufeng, 2020. "Black plastic film combined with straw mulching delays senescence and increases summer maize yield in northwest China," Agricultural Water Management, Elsevier, vol. 231(C).
- Feng, Yu & Hao, Weiping & Gao, Lili & Li, Haoru & Gong, Daozhi & Cui, Ningbo, 2019. "Comparison of maize water consumption at different scales between mulched and non-mulched croplands," Agricultural Water Management, Elsevier, vol. 216(C), pages 315-324.
- Fang, Heng & Li, Yuannong & Gu, Xiaobo & Li, Yupeng & Chen, Pengpeng, 2021. "Can ridge-furrow with film and straw mulching improve wheat-maize system productivity and maintain soil fertility on the Loess Plateau of China?," Agricultural Water Management, Elsevier, vol. 246(C).
- Chai, Yuwei & Chai, Qiang & Yang, Changgang & Chen, Yuzhang & Li, Rui & Li, Yawei & Chang, Lei & Lan, Xuemei & Cheng, Hongbo & Chai, Shouxi, 2022. "Plastic film mulching increases yield, water productivity, and net income of rain-fed winter wheat compared with no mulching in semiarid Northwest China," Agricultural Water Management, Elsevier, vol. 262(C).
- Li, Yue & Chen, Hao & Feng, Hao & Dong, Qin’ge & Wu, Wenjie & Zou, Yufeng & Chau, Henry Wai & Siddique, Kadambot H.M., 2020. "Influence of straw incorporation on soil water utilization and summer maize productivity: A five-year field study on the Loess Plateau of China," Agricultural Water Management, Elsevier, vol. 233(C).
- Dong, Qin’ge & Yang, Yuchen & Yu, Kun & Feng, Hao, 2018. "Effects of straw mulching and plastic film mulching on improving soil organic carbon and nitrogen fractions, crop yield and water use efficiency in the Loess Plateau, China," Agricultural Water Management, Elsevier, vol. 201(C), pages 133-143.
- Hu, Yajin & Ma, Penghui & Zhang, Binbin & Hill, Robert L. & Wu, Shufang & Dong, Qin’ge & Chen, Guangjie, 2019. "Exploring optimal soil mulching for the wheat-maize cropping system in sub-humid drought-prone regions in China," Agricultural Water Management, Elsevier, vol. 219(C), pages 59-71.
- Fan, Yaqiong & Ding, Risheng & Kang, Shaozhong & Hao, Xinmei & Du, Taisheng & Tong, Ling & Li, Sien, 2017. "Plastic mulch decreases available energy and evapotranspiration and improves yield and water use efficiency in an irrigated maize cropland," Agricultural Water Management, Elsevier, vol. 179(C), pages 122-131.
- He, Gang & Wang, Zhaohui & Li, Fucui & Dai, Jian & Li, Qiang & Xue, Cheng & Cao, Hanbing & Wang, Sen & Malhi, Sukhdev S., 2016. "Soil water storage and winter wheat productivity affected by soil surface management and precipitation in dryland of the Loess Plateau, China," Agricultural Water Management, Elsevier, vol. 171(C), pages 1-9.
- Fan, Yubing & Wang, Chenggang & Nan, Zhibiao, 2014. "Comparative evaluation of crop water use efficiency, economic analysis and net household profit simulation in arid Northwest China," Agricultural Water Management, Elsevier, vol. 146(C), pages 335-345.
- Duan, Chenxiao & Chen, Guangjie & Hu, Yajin & Wu, Shufang & Feng, Hao & Dong, Qin’ge, 2021. "Alternating wide ridges and narrow furrows with film mulching improves soil hydrothermal conditions and maize water use efficiency in dry sub-humid regions," Agricultural Water Management, Elsevier, vol. 245(C).
- Zhao, Ying & Zhai, Xiafei & Wang, Zhaohui & Li, Huijie & Jiang, Rui & Lee Hill, Robert & Si, Bing & Hao, Feng, 2018. "Simulation of soil water and heat flow in ridge cultivation with plastic film mulching system on the Chinese Loess Plateau," Agricultural Water Management, Elsevier, vol. 202(C), pages 99-112.
- He, Zhihao & Gong, Kaiyuan & Zhang, Zhiliang & Dong, Wenbiao & Feng, Hao & Yu, Qiang & He, Jianqiang, 2022. "What is the past, present, and future of scientific research on the Yellow River Basin? —A bibliometric analysis," Agricultural Water Management, Elsevier, vol. 262(C).
- Xing Wang & Hailong Sun & Changming Tan & Xiaowen Wang & Min Xia, 2021. "Effects of Film Mulching on Plant Growth and Nutrients in Artificial Soil: A Case Study on High Altitude Slopes," Sustainability, MDPI, vol. 13(19), pages 1-15, October.
- Fu, Wei & Fan, Jun & Hao, Mingde & Hu, Jinsheng & Wang, Huan, 2021. "Evaluating the effects of plastic film mulching patterns on cultivation of winter wheat in a dryland cropping system on the Loess Plateau, China," Agricultural Water Management, Elsevier, vol. 244(C).
- Zhang, Xiao-Feng & Luo, Chong-Liang & Ren, Hong-Xu & Mburu, David & Wang, Bao-Zhong & Kavagi, Levis & Wesly, Kiprotich & Nyende, Aggrey Bernard & Xiong, You-Cai, 2021. "Water productivity and its allometric mechanism in mulching cultivated maize (Zea mays L.) in semiarid Kenya," Agricultural Water Management, Elsevier, vol. 246(C).
- Gao, Haihe & Yan, Changrong & Liu, Qin & Li, Zhen & Yang, Xiao & Qi, Ruimin, 2019. "Exploring optimal soil mulching to enhance yield and water use efficiency in maize cropping in China: A meta-analysis," Agricultural Water Management, Elsevier, vol. 225(C).
- Zhang, Runze & Lei, Tong & Wang, Yunfeng & Xu, Jiaxing & Zhang, Panxin & Han, Yan & Hu, Changlu & Yang, Xueyun & Sadras, Victor & Zhang, Shulan, 2022. "Responses of yield and water use efficiency to the interaction between water supply and plastic film mulch in winter wheat-summer fallow system," Agricultural Water Management, Elsevier, vol. 266(C).
- Dong, Qiang & Dang, Tinghui & Guo, Shengli & Hao, Mingde, 2019. "Effects of mulching measures on soil moisture and N leaching potential in a spring maize planting system in the southern Loess Plateau," Agricultural Water Management, Elsevier, vol. 213(C), pages 803-808.
More about this item
Keywords
Global warming potential; Greenhouse gas emissions; Greenhouse gas intensity; Grain yield; Loess Plateau;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:274:y:2022:i:c:s0378377422004887. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.