IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v249y2021ics0378377421000743.html
   My bibliography  Save this article

Straw mulching improves soil water content, increases flag leaf photosynthetic parameters and maintaines the yield of winter wheat with different irrigation amounts

Author

Listed:
  • Zhang, Yanqun
  • Wang, Jiandong
  • Gong, Shihong
  • Xu, Di
  • Mo, Yan
  • Zhang, Baozhong

Abstract

In North China Plain, straw mulching is increasingly applied to the succeeding crops with winter wheat-summer maize double cropping system. However, research results on the effect of maize straw mulching on the yield of winter wheat are inconsistent, and the underlying mechanism of the effect remains unclear. Such information is helpful to guide the field water management for higher yield. In this study, soil moisture, plant growth, photosynthesis and yield of winter wheat field treated with no-till and straw mulching (SM) and non- mulching (N) and three irrigation amounts (high, middle and low irrigation, HI, MI and LI) in four growing seasons in 2013–2016. The results showed that straw mulching improved soil moisture by reducing the days of soil moisture less than 60% field capacity for 2–10 days. Straw mulching increased net photosynthetic rate, stomatal conductance, maximum carboxylation rate (Vcmax), and the maximum rate of photosynthetic electron transport (Jmax) of flag leaves, especially at the post-anthesis measurements, during which, the above parameters increased by 20.6%, 21.9%, 28.7% and 25.2%, respectively. Compared with pre-anthesis measurements, the post-anthesis Vcmax and Jmax values decreased, but the decrease percentage of the SM treatments (10.8–25.7% for Vcmax and 22.0%−49.6% for Jmax) was less than those of N treatments (19.6%−41.4% for Vcmax and 29.3%−61.3% for Jmax). Vcmax and Jmax were significantly linear correlating to leaf nitrogen content and the relationships between them were not affected by straw mulching. The yield was not affected by straw mulching. However, straw mulching significantly increased the intercept of the linear relationship between yield and canopy potential photosynthetic capacity (the productions of leaf area index and Vcmax, or Jmax), indicating that straw mulching may improve the harvest index of winter wheat. The overall net effect of straw mulching was a favorable environment that stimulated plant photosynthesis, which compensated the lower LAI and tiller density, in turn, maintained wheat yield. This study elucidated the physiological basis of straw mulching and no-till effect on yield and provided photosynthetic parameters of winter wheat under such soil management.

Suggested Citation

  • Zhang, Yanqun & Wang, Jiandong & Gong, Shihong & Xu, Di & Mo, Yan & Zhang, Baozhong, 2021. "Straw mulching improves soil water content, increases flag leaf photosynthetic parameters and maintaines the yield of winter wheat with different irrigation amounts," Agricultural Water Management, Elsevier, vol. 249(C).
  • Handle: RePEc:eee:agiwat:v:249:y:2021:i:c:s0378377421000743
    DOI: 10.1016/j.agwat.2021.106809
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377421000743
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2021.106809?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zhang, Yanqun & Wang, Jiandong & Gong, Shihong & Xu, Di & Mo, Yan, 2019. "Straw mulching enhanced the photosynthetic capacity of field maize by increasing the leaf N use efficiency," Agricultural Water Management, Elsevier, vol. 218(C), pages 60-67.
    2. Yan, Zhenxing & Gao, Chao & Ren, Yujie & Zong, Rui & Ma, Yuzhao & Li, Quanqi, 2017. "Effects of pre-sowing irrigation and straw mulching on the grain yield and water use efficiency of summer maize in the North China Plain," Agricultural Water Management, Elsevier, vol. 186(C), pages 21-28.
    3. Du, Taisheng & Kang, Shaozhong & Sun, Jingsheng & Zhang, Xiying & Zhang, Jianhua, 2010. "An improved water use efficiency of cereals under temporal and spatial deficit irrigation in north China," Agricultural Water Management, Elsevier, vol. 97(1), pages 66-74, January.
    4. Liu, E.K. & Mei, X.R. & Yan, C.R. & Gong, D.Z. & Zhang, Y.Q., 2016. "Effects of water stress on photosynthetic characteristics, dry matter translocation and WUE in two winter wheat genotypes," Agricultural Water Management, Elsevier, vol. 167(C), pages 75-85.
    5. Zhang, Yanqun & Wang, Jiandong & Gong, Shihong & Xu, Di & Sui, Juan, 2017. "Nitrogen fertigation effect on photosynthesis, grain yield and water use efficiency of winter wheat," Agricultural Water Management, Elsevier, vol. 179(C), pages 277-287.
    6. Li, Jiamin & Inanaga, Shinobu & Li, Zhaohu & Eneji, A. Egrinya, 2005. "Optimizing irrigation scheduling for winter wheat in the North China Plain," Agricultural Water Management, Elsevier, vol. 76(1), pages 8-23, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zheng, Jing & Fan, Junliang & Zhou, Minghua & Zhang, Fucang & Liao, Zhenqi & Lai, Zhenlin & Yan, Shicheng & Guo, Jinjin & Li, Zhijun & Xiang, Youzhen, 2022. "Ridge-furrow plastic film mulching enhances grain yield and yield stability of rainfed maize by improving resources capture and use efficiency in a semi-humid drought-prone region," Agricultural Water Management, Elsevier, vol. 269(C).
    2. Li, Yue & Chen, Ji & Feng, Hao & Dong, Qin’ge & Siddique, Kadambot H.M., 2021. "Responses of canopy characteristics and water use efficiency to ammoniated straw incorporation for summer maize (Zea mays L.) in the Loess Plateau, China," Agricultural Water Management, Elsevier, vol. 254(C).
    3. Lianjie Han & Wei Yuan & Jinjin Yu & Jiajun Jin & Dongshen Xie & Xiaobo Xi & Yifu Zhang & Ruihong Zhang, 2022. "Simulation and Experiment of Spiral Soil Separation Mechanism of Compound Planter Based on Discrete Element Method (DEM)," Agriculture, MDPI, vol. 12(4), pages 1-15, April.
    4. Lv, Shenqiang & Li, Jia & Yang, Zeyu & Yang, Ting & Li, Huitong & Wang, Xiaofei & Peng, Yi & Zhou, Chunju & Wang, Linquan & Abdo, Ahmed I., 2023. "The field mulching could improve sustainability of spring maize production on the Loess Plateau," Agricultural Water Management, Elsevier, vol. 279(C).
    5. Li, Shuo & Wang, Shujuan & Shi, Jianglan & Tian, Xiaohong & Wu, Jiechen, 2022. "Economic, energy and environmental performance assessment on wheat production under water-saving cultivation strategies," Energy, Elsevier, vol. 261(PB).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ding, Jinli & Wu, Jicheng & Ding, Dianyuan & Yang, Yonghui & Gao, Cuimin & Hu, Wei, 2021. "Effects of tillage and straw mulching on the crop productivity and hydrothermal resource utilization in a winter wheat-summer maize rotation system," Agricultural Water Management, Elsevier, vol. 254(C).
    2. Yan, Zhenxing & Zhang, Wenying & Liu, Xiuwei & Wang, Qingsuo & Liu, Binhui & Mei, Xurong, 2024. "Grain yield and water productivity of winter wheat controlled by irrigation regime and manure substitution in the North China Plain," Agricultural Water Management, Elsevier, vol. 295(C).
    3. Li, Haoru & Li, Xiaoli & Mei, Xurong & Nangia, Vinay & Guo, Rui & Hao, Weiping & Wang, Jiandong, 2023. "An alternative water-fertilizer-saving management practice for wheat-maize cropping system in the North China Plain: Based on a 4-year field study," Agricultural Water Management, Elsevier, vol. 276(C).
    4. Guo, Jinjin & Fan, Junliang & Xiang, Youzhen & Zhang, Fucang & Yan, Shicheng & Zhang, Xueyan & Zheng, Jing & Hou, Xianghao & Tang, Zijun & Li, Zhijun, 2022. "Maize leaf functional responses to blending urea and slow-release nitrogen fertilizer under various drip irrigation regimes," Agricultural Water Management, Elsevier, vol. 262(C).
    5. Zeng, Ruiyun & Yao, Fengmei & Zhang, Sha & Yang, Shanshan & Bai, Yun & Zhang, Jiahua & Wang, Jingwen & Wang, Xin, 2021. "Assessing the effects of precipitation and irrigation on winter wheat yield and water productivity in North China Plain," Agricultural Water Management, Elsevier, vol. 256(C).
    6. Si, Zhuanyun & Zain, Muhammad & Mehmood, Faisal & Wang, Guangshuai & Gao, Yang & Duan, Aiwang, 2020. "Effects of nitrogen application rate and irrigation regime on growth, yield, and water-nitrogen use efficiency of drip-irrigated winter wheat in the North China Plain," Agricultural Water Management, Elsevier, vol. 231(C).
    7. Zhang, Yanqun & Wang, Jiandong & Gong, Shihong & Xu, Di & Mo, Yan, 2019. "Straw mulching enhanced the photosynthetic capacity of field maize by increasing the leaf N use efficiency," Agricultural Water Management, Elsevier, vol. 218(C), pages 60-67.
    8. Ali, Shahzad & Xu, Yueyue & Jia, Qianmin & Ahmad, Irshad & Wei, Ting & Ren, Xiaolong & Zhang, Peng & Din, Ruixia & Cai, Tie & Jia, Zhikuan, 2018. "Cultivation techniques combined with deficit irrigation improves winter wheat photosynthetic characteristics, dry matter translocation and water use efficiency under simulated rainfall conditions," Agricultural Water Management, Elsevier, vol. 201(C), pages 207-218.
    9. Chuanjuan Wang & Jiandong Wang & Yanqun Zhang & Shanshan Qin & Yuanyuan Zhang & Chaoqun Liu, 2022. "Effects of Different Mulching Materials on the Grain Yield and Water Use Efficiency of Maize in the North China Plain," Agriculture, MDPI, vol. 12(8), pages 1-15, July.
    10. Farooq, Muhammad & Hussain, Mubshar & Ul-Allah, Sami & Siddique, Kadambot H.M., 2019. "Physiological and agronomic approaches for improving water-use efficiency in crop plants," Agricultural Water Management, Elsevier, vol. 219(C), pages 95-108.
    11. Qian Li & Yan Chen & Shikun Sun & Muyuan Zhu & Jing Xue & Zihan Gao & Jinfeng Zhao & Yihe Tang, 2022. "Research on Crop Irrigation Schedules Under Deficit Irrigation—A Meta-analysis," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(12), pages 4799-4817, September.
    12. Wang, Linlin & Li, Qiang & Coulter, Jeffrey A. & Xie, Junhong & Luo, Zhuzhu & Zhang, Renzhi & Deng, Xiping & Li, Linglin, 2020. "Winter wheat yield and water use efficiency response to organic fertilization in northern China: A meta-analysis," Agricultural Water Management, Elsevier, vol. 229(C).
    13. Lv, Zhaoyan & Diao, Ming & Li, Weihua & Cai, Jian & Zhou, Qin & Wang, Xiao & Dai, Tingbo & Cao, Weixing & Jiang, Dong, 2019. "Impacts of lateral spacing on the spatial variations in water use and grain yield of spring wheat plants within different rows in the drip irrigation system," Agricultural Water Management, Elsevier, vol. 212(C), pages 252-261.
    14. Yan, Shicheng & Wu, You & Fan, Junliang & Zhang, Fucang & Guo, Jinjin & Zheng, Jing & Wu, Lifeng, 2022. "Optimization of drip irrigation and fertilization regimes to enhance winter wheat grain yield by improving post-anthesis dry matter accumulation and translocation in northwest China," Agricultural Water Management, Elsevier, vol. 271(C).
    15. Peng Zhang & Fengge Hao & Zitan Zhu & Dongmei Lang & Huiling Hu, 2023. "Inoculation with Bacillus alters nitrogen uptake and metabolism in roots of Diospyros lotus under wheat straw addition in soil," Plant, Soil and Environment, Czech Academy of Agricultural Sciences, vol. 69(10), pages 463-470.
    16. Kang, Shaozhong & Hao, Xinmei & Du, Taisheng & Tong, Ling & Su, Xiaoling & Lu, Hongna & Li, Xiaolin & Huo, Zailin & Li, Sien & Ding, Risheng, 2017. "Improving agricultural water productivity to ensure food security in China under changing environment: From research to practice," Agricultural Water Management, Elsevier, vol. 179(C), pages 5-17.
    17. Zhang, Chao & Xie, Ziang & Wang, Qiaojuan & Tang, Min & Feng, Shaoyuan & Cai, Huanjie, 2022. "AquaCrop modeling to explore optimal irrigation of winter wheat for improving grain yield and water productivity," Agricultural Water Management, Elsevier, vol. 266(C).
    18. Savé, R. & de Herralde, F. & Aranda, X. & Pla, E. & Pascual, D. & Funes, I. & Biel, C., 2012. "Potential changes in irrigation requirements and phenology of maize, apple trees and alfalfa under global change conditions in Fluvià watershed during XXIst century: Results from a modeling approximat," Agricultural Water Management, Elsevier, vol. 114(C), pages 78-87.
    19. Zhao, Nana & Liu, Yu & Cai, Jiabing & Paredes, Paula & Rosa, Ricardo D. & Pereira, Luis S., 2013. "Dual crop coefficient modelling applied to the winter wheat–summer maize crop sequence in North China Plain: Basal crop coefficients and soil evaporation component," Agricultural Water Management, Elsevier, vol. 117(C), pages 93-105.
    20. Ma, Shou-tian & Wang, Tong-chao & Ma, Shou-Chen, 2022. "Effects of drip irrigation on root activity pattern, root-sourced signal characteristics and yield stability of winter wheat," Agricultural Water Management, Elsevier, vol. 271(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:249:y:2021:i:c:s0378377421000743. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.