IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v265y2022ics0378377422000415.html
   My bibliography  Save this article

Interaction between soil water and fertilizer utilization on maize under plastic mulching in an arid irrigation region of China

Author

Listed:
  • Quan, Hao
  • Wu, Lihong
  • Ding, Dianyuan
  • Yang, Zhenting
  • Wang, Naijiang
  • Chen, Guangjie
  • Li, Cheng
  • Dong, Qin'ge
  • Feng, Hao
  • Zhang, Tibin
  • Siddique, Kadambot H.M.

Abstract

Plastic film mulching (PM) has become a widely used cropping method in arid and semiarid areas. However, it is unknown how different PMs affect crop water and N utilization and their interaction under different N supplies. A two-year field experiment was conducted in the Hetao Irrigation District (HID), in northwest China. Following local irrigation practices, 500 mm border irrigation was used to grow spring maize over two growing seasons (2019 and 2020) with two N levels: high-N (225 kg N ha–1) and low-N (150 kg N ha–1). Combined with three mulching methods, the experiment had five treatments: (i) no mulching with high-N (control, CK), (ii) black plastic film with high-N (HB), (iii) transparent plastic film with high-N (HT), (iv) black plastic film with low-N (LB), and (v) transparent plastic film with low-N (LT). The 4 PM treatments had higher average soil water storage (0–120 cm) than CK. The PM treatments had the highest water consumption coefficients (Kwcn) at 6–leaf to 12–leaf stage (Kwc2) and milking to maturity (Kwc5) stage. The HP treatments (HB and HT) had higher soil nitrogen storage than CK during the growth period. Averaged across two seasons, HB and HT had 23.9%, 29.2% respectively, higher grain yields than CK. Averaged across two seasons, the transparent PM treatments had 7.49%, 5.31%, and 1.72% higher water use efficiency (WUE), partial factor productivity of nitrogen (PFPN), and harvest index, respectively, than the black PM treatments. The PM treatments showed the relationship between water use efficiency of biomass (WUEb) and nitrogen use efficiency of biomass (NUEb), with WUEb increased, NUEb also increased. Given these results, we recommend the high-N level and transparent PM for maize cropping to increase yield and resource utilization efficiency in the HID.

Suggested Citation

  • Quan, Hao & Wu, Lihong & Ding, Dianyuan & Yang, Zhenting & Wang, Naijiang & Chen, Guangjie & Li, Cheng & Dong, Qin'ge & Feng, Hao & Zhang, Tibin & Siddique, Kadambot H.M., 2022. "Interaction between soil water and fertilizer utilization on maize under plastic mulching in an arid irrigation region of China," Agricultural Water Management, Elsevier, vol. 265(C).
  • Handle: RePEc:eee:agiwat:v:265:y:2022:i:c:s0378377422000415
    DOI: 10.1016/j.agwat.2022.107494
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377422000415
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2022.107494?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Dong, Qin’ge & Yang, Yuchen & Yu, Kun & Feng, Hao, 2018. "Effects of straw mulching and plastic film mulching on improving soil organic carbon and nitrogen fractions, crop yield and water use efficiency in the Loess Plateau, China," Agricultural Water Management, Elsevier, vol. 201(C), pages 133-143.
    2. Dong, Qin’ge & Yang, Yuchen & Zhang, Tinbin & Zhou, Lifeng & He, Jianqiang & Chau, Henry Wai & Zou, Yufeng & Feng, Hao, 2018. "Impacts of ridge with plastic mulch-furrow irrigation on soil salinity, spring maize yield and water use efficiency in an arid saline area," Agricultural Water Management, Elsevier, vol. 201(C), pages 268-277.
    3. Liu, Haijun & Wang, Xuming & Zhang, Xian & Zhang, Liwei & Li, Yan & Huang, Guanhua, 2017. "Evaluation on the responses of maize (Zea mays L.) growth, yield and water use efficiency to drip irrigation water under mulch condition in the Hetao irrigation District of China," Agricultural Water Management, Elsevier, vol. 179(C), pages 144-157.
    4. Zhou, Lifeng & He, Jianqiang & Qi, Zhijuan & Dyck, Miles & Zou, Yufeng & Zhang, Tibin & Feng, Hao, 2018. "Effects of lateral spacing for drip irrigation and mulching on the distributions of soil water and nitrate, maize yield, and water use efficiency," Agricultural Water Management, Elsevier, vol. 199(C), pages 190-200.
    5. Zhang, Yanqun & Wang, Jiandong & Gong, Shihong & Xu, Di & Sui, Juan & Wu, Zhongdong & Mo, Yan, 2018. "Effects of film mulching on evapotranspiration, yield and water use efficiency of a maize field with drip irrigation in Northeastern China," Agricultural Water Management, Elsevier, vol. 205(C), pages 90-99.
    6. Li, Rong & Hou, Xianqing & Jia, Zhikuan & Han, Qingfang & Ren, Xiaolong & Yang, Baoping, 2013. "Effects on soil temperature, moisture, and maize yield of cultivation with ridge and furrow mulching in the rainfed area of the Loess Plateau, China," Agricultural Water Management, Elsevier, vol. 116(C), pages 101-109.
    7. Bai, Liangliang & Cai, Jiabing & Liu, Yu & Chen, He & Zhang, Baozhong & Huang, Lingxu, 2017. "Responses of field evapotranspiration to the changes of cropping pattern and groundwater depth in large irrigation district of Yellow River basin," Agricultural Water Management, Elsevier, vol. 188(C), pages 1-11.
    8. Hu, Yajin & Ma, Penghui & Duan, Chenxiao & Wu, Shufang & Feng, Hao & Zou, Yufeng, 2020. "Black plastic film combined with straw mulching delays senescence and increases summer maize yield in northwest China," Agricultural Water Management, Elsevier, vol. 231(C).
    9. Minhas, P.S. & Ramos, Tiago B. & Ben-Gal, Alon & Pereira, Luis S., 2020. "Coping with salinity in irrigated agriculture: Crop evapotranspiration and water management issues," Agricultural Water Management, Elsevier, vol. 227(C).
    10. Daryanto, Stefani & Wang, Lixin & Jacinthe, Pierre-André, 2017. "Can ridge-furrow plastic mulching replace irrigation in dryland wheat and maize cropping systems?," Agricultural Water Management, Elsevier, vol. 190(C), pages 1-5.
    11. Zhang, Tibin & Zou, Yufeng & Kisekka, Isaya & Biswas, Asim & Cai, Huanjie, 2021. "Comparison of different irrigation methods to synergistically improve maize’s yield, water productivity and economic benefits in an arid irrigation area," Agricultural Water Management, Elsevier, vol. 243(C).
    12. Qi, Zhijuan & Feng, Hao & Zhao, Ying & Zhang, Tibin & Yang, Aizheng & Zhang, Zhongxue, 2018. "Spatial distribution and simulation of soil moisture and salinity under mulched drip irrigation combined with tillage in an arid saline irrigation district, northwest China," Agricultural Water Management, Elsevier, vol. 201(C), pages 219-231.
    13. Peng, Zhengkai & Wang, Linlin & Xie, Junhong & Li, Lingling & Coulter, Jeffrey A. & Zhang, Renzhi & Luo, Zhuzhu & Cai, Liqun & Carberry, Peter & Whitbread, Anthony, 2020. "Conservation tillage increases yield and precipitation use efficiency of wheat on the semi-arid Loess Plateau of China," Agricultural Water Management, Elsevier, vol. 231(C).
    14. Miao, Qingfeng & Rosa, Ricardo D. & Shi, Haibin & Paredes, Paula & Zhu, Li & Dai, Jiaxin & Gonçalves, José M. & Pereira, Luis S., 2016. "Modeling water use, transpiration and soil evaporation of spring wheat–maize and spring wheat–sunflower relay intercropping using the dual crop coefficient approach," Agricultural Water Management, Elsevier, vol. 165(C), pages 211-229.
    15. Xue, Jingyuan & Guan, Huade & Huo, Zailin & Wang, Fengxin & Huang, Guanhua & Boll, Jan, 2017. "Water saving practices enhance regional efficiency of water consumption and water productivity in an arid agricultural area with shallow groundwater," Agricultural Water Management, Elsevier, vol. 194(C), pages 78-89.
    16. Zhang, Huimeng & Xiong, Yunwu & Huang, Guanhua & Xu, Xu & Huang, Quanzhong, 2017. "Effects of water stress on processing tomatoes yield, quality and water use efficiency with plastic mulched drip irrigation in sandy soil of the Hetao Irrigation District," Agricultural Water Management, Elsevier, vol. 179(C), pages 205-214.
    17. Dong, Qiang & Dang, Tinghui & Guo, Shengli & Hao, Mingde, 2019. "Effect of different mulching measures on nitrate nitrogen leaching in spring maize planting system in south of Loess Plateau," Agricultural Water Management, Elsevier, vol. 213(C), pages 654-658.
    18. Zhang, Yuehong & Li, Xianyue & Šimůnek, Jirí & Shi, Haibin & Chen, Ning & Hu, Qi & Tian, Tong, 2021. "Evaluating soil salt dynamics in a field drip-irrigated with brackish water and leached with freshwater during different crop growth stages," Agricultural Water Management, Elsevier, vol. 244(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhou, Hongliang & Wang, Le & Xu, Pengjie & Liu, Dongfei & Zhang, Lijuan & Hao, Yuchen & Wang, Kaiyong & Fan, Hua, 2024. "Nitrogen use efficiency of drip irrigated sugar beet as affected by sub-optimal levels of nitrogen and irrigation," Agricultural Water Management, Elsevier, vol. 298(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Liu, Meihan & Paredes, Paula & Shi, Haibin & Ramos, Tiago B. & Dou, Xu & Dai, Liping & Pereira, Luis S., 2022. "Impacts of a shallow saline water table on maize evapotranspiration and groundwater contribution using static water table lysimeters and the dual Kc water balance model SIMDualKc," Agricultural Water Management, Elsevier, vol. 273(C).
    2. Liu, Meihan & Shi, Haibin & Paredes, Paula & Ramos, Tiago B. & Dai, Liping & Feng, Zhuangzhuang & Pereira, Luis S., 2022. "Estimating and partitioning maize evapotranspiration as affected by salinity using weighing lysimeters and the SIMDualKc model," Agricultural Water Management, Elsevier, vol. 261(C).
    3. Li, Cheng & Luo, Xiaoqi & Wang, Naijiang & Wu, Wenjie & Li, Yue & Quan, Hao & Zhang, Tibin & Ding, Dianyuan & Dong, Qin’ge & Feng, Hao, 2022. "Transparent plastic film combined with deficit irrigation improves hydrothermal status of the soil-crop system and spring maize growth in arid areas," Agricultural Water Management, Elsevier, vol. 265(C).
    4. Zhang, Tibin & Zou, Yufeng & Kisekka, Isaya & Biswas, Asim & Cai, Huanjie, 2021. "Comparison of different irrigation methods to synergistically improve maize’s yield, water productivity and economic benefits in an arid irrigation area," Agricultural Water Management, Elsevier, vol. 243(C).
    5. Gao, Haihe & Yan, Changrong & Liu, Qin & Li, Zhen & Yang, Xiao & Qi, Ruimin, 2019. "Exploring optimal soil mulching to enhance yield and water use efficiency in maize cropping in China: A meta-analysis," Agricultural Water Management, Elsevier, vol. 225(C).
    6. Xiong, Lvyang & Jiang, Yao & Li, Xinyi & Ren, Dongyang & Huang, Guanhua, 2023. "Long-term regional groundwater responses and their ecological impacts under agricultural water saving in an arid irrigation district, upper Yellow River basin," Agricultural Water Management, Elsevier, vol. 288(C).
    7. Ramos, Tiago B. & Liu, Meihan & Paredes, Paula & Shi, Haibin & Feng, Zhuangzhuang & Lei, Huimin & Pereira, Luis S., 2023. "Salts dynamics in maize irrigation in the Hetao plateau using static water table lysimeters and HYDRUS-1D with focus on the autumn leaching irrigation," Agricultural Water Management, Elsevier, vol. 283(C).
    8. Huang, Ya & Zhang, Zhe & Li, Zhenhua & Dai, Danqiong & Li, Yanping, 2022. "Evaluation of water use efficiency and optimal irrigation quantity of spring maize in Hetao Irrigation District using the Noah-MP Land Surface Model," Agricultural Water Management, Elsevier, vol. 264(C).
    9. Li, Cheng & Feng, Hao & Luo, Xiaoqi & Li, Yue & Wang, Naijiang & Wu, Wenjie & Zhang, Tibin & Dong, Qin’ge & Siddique, Kadambot H.M., 2022. "Limited irrigation and fertilization in sand-layered soil increases nitrogen use efficiency and economic benefits under film mulched ridge-furrow irrigation in arid areas," Agricultural Water Management, Elsevier, vol. 262(C).
    10. Han, Xuyang & Feng, Yu & Zhao, Jie & Ren, Aixia & Lin, Wen & Sun, Min & Gao, Zhiqiang, 2022. "Hydrothermal conditions impact yield, yield gap and water use efficiency of dryland wheat under different mulching practice in the Loess Plateau," Agricultural Water Management, Elsevier, vol. 264(C).
    11. Wu, Zhangsheng & Li, Yue & Wang, Rong & Xu, Xu & Ren, Dongyang & Huang, Quanzhong & Xiong, Yunwu & Huang, Guanhua, 2023. "Evaluation of irrigation water saving and salinity control practices of maize and sunflower in the upper Yellow River basin with an agro-hydrological model based method," Agricultural Water Management, Elsevier, vol. 278(C).
    12. Jovanovic, N. & Pereira, L.S. & Paredes, P. & Pôças, I. & Cantore, V. & Todorovic, M., 2020. "A review of strategies, methods and technologies to reduce non-beneficial consumptive water use on farms considering the FAO56 methods," Agricultural Water Management, Elsevier, vol. 239(C).
    13. Zhao, Tianxing & Zhu, Yan & Ye, Ming & Yang, Jinzhong & Jia, Biao & Mao, Wei & Wu, Jingwei, 2022. "A new approach for estimating spatial-temporal phreatic evapotranspiration at a regional scale using NDVI and water table depth measurements," Agricultural Water Management, Elsevier, vol. 264(C).
    14. Hu, Yajin & Ma, Penghui & Duan, Chenxiao & Wu, Shufang & Feng, Hao & Zou, Yufeng, 2020. "Black plastic film combined with straw mulching delays senescence and increases summer maize yield in northwest China," Agricultural Water Management, Elsevier, vol. 231(C).
    15. Xuemei Lan & Shouxi Chai & Jeffrey A. Coulter & Hongbo Cheng & Lei Chang & Caixia Huang & Rui Li & Yuwei Chai & Yawei Li & Jiantao Ma & Li Li, 2020. "Maize Straw Strip Mulching as a Replacement for Plastic Film Mulching in Maize Production in a Semiarid Region," Sustainability, MDPI, vol. 12(15), pages 1-26, August.
    16. Wang, Yunqi & Guo, Tongji & Qi, Liuran & Zeng, Huanyu & Liang, Yuexin & Wei, Shikun & Gao, Fuli & Wang, Lixin & Zhang, Rui & Jia, Zhikuan, 2020. "Meta-analysis of ridge-furrow cultivation effects on maize production and water use efficiency," Agricultural Water Management, Elsevier, vol. 234(C).
    17. Quan, Hao & Ding, Dianyuan & Wu, Lihong & Qiao, Ruonan & Dong, Qin'ge & Zhang, Tibin & Feng, Hao & Wu, Lianhai & Siddique, Kadambot H.M., 2022. "Future climate change impacts on mulched maize production in an arid irrigation area," Agricultural Water Management, Elsevier, vol. 266(C).
    18. Song, Zengzhen & Peng, Yuxing & Li, Zizhong & Zhang, Shuai & Liu, Xiaotong & Tan, Senwen, 2022. "Two irrigation events can achieve relatively high, stable corn yield and water productivity in aeolian sandy soil of northeast China," Agricultural Water Management, Elsevier, vol. 260(C).
    19. Zhang, Jinxia & Du, Liangliang & Xing, Zisheng & Zhang, Rui & Li, Fuqiang & Zhong, Tao & Ren, Fangfang & Yin, Meng & Ding, Lin & Liu, Xingrong, 2023. "Effects of dual mulching with wheat straw and plastic film under three irrigation regimes on soil nutrients and growth of edible sunflower," Agricultural Water Management, Elsevier, vol. 288(C).
    20. Ren, Dongyang & Xu, Xu & Engel, Bernard & Huang, Quanzhong & Xiong, Yunwu & Huo, Zailin & Huang, Guanhua, 2021. "A comprehensive analysis of water productivity in natural vegetation and various crops coexistent agro-ecosystems," Agricultural Water Management, Elsevier, vol. 243(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:265:y:2022:i:c:s0378377422000415. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.