IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v123y2013icp71-78.html
   My bibliography  Save this article

The effects of mulching on maize growth, yield and water use in a semi-arid region

Author

Listed:
  • Bu, Ling-duo
  • Liu, Jian-liang
  • Zhu, Lin
  • Luo, Sha-sha
  • Chen, Xin-ping
  • Li, Shi-qing
  • Lee Hill, Robert
  • Zhao, Ying

Abstract

Rain-fed maize production in semi-arid areas of the Loess Plateau in China is constrained by low temperatures and water limitations during the early growth stage. Traditionally, gravel mulching was an effective strategy to increase soil temperature and moisture and, therefore, crop production; this method was recently replaced by plastic film mulching with the onset of industrial development. This study aimed to evaluate the effects of the two mulching methods on the crop growth, yield, and water-use efficiency of maize (Zea mays L.). Three treatments [non-mulched (CK, control), gravel-mulched (GM) and plastic film-mulched (FM)] were compared in 2010 and 2011 at the Changwu experimental station. Compared to CK, both gravel and plastic film mulching increased the cumulative soil thermal time (TTSoil) by 150–220°C over the growing season. During seedling stage, the FM treatment increased the TTSoil by 50°C in 2010 and by 79°C in 2011, which was higher than that caused by GM treatment by 37°C and 41°C, respectively. The higher soil temperatures in the FM treatment significantly accelerated maize growth and development more than the GM treatment. The FM treatment stimulated the highest growth rate during vegetative stages, as indicated by a greater leaf area index and the intercepted photosynthetically active radiation, and consistently produced the highest shoot biomass throughout the growing season. Compared with the CK, the grain yields increased by 17.0% and 28.3% in 2010, and 70.2% and 87.5% in 2011 (a colder year) for the GM and FM treatments, respectively. Similarly, water-use efficiency was improved by 15% and 23% in 2010, and by 51% and 90% in 2011 for the GM and FM treatments, respectively. Overall, we concluded that plastic film mulching, compared to gravel mulching, was more effective at counteracting the region's water limitations and low temperatures.

Suggested Citation

  • Bu, Ling-duo & Liu, Jian-liang & Zhu, Lin & Luo, Sha-sha & Chen, Xin-ping & Li, Shi-qing & Lee Hill, Robert & Zhao, Ying, 2013. "The effects of mulching on maize growth, yield and water use in a semi-arid region," Agricultural Water Management, Elsevier, vol. 123(C), pages 71-78.
  • Handle: RePEc:eee:agiwat:v:123:y:2013:i:c:p:71-78
    DOI: 10.1016/j.agwat.2013.03.015
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377413000760
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2013.03.015?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Li, Feng-Min & Wang, Ping & Wang, Jun & Xu, Jin-Zhang, 2004. "Effects of irrigation before sowing and plastic film mulching on yield and water uptake of spring wheat in semiarid Loess Plateau of China," Agricultural Water Management, Elsevier, vol. 67(2), pages 77-88, June.
    2. Wang, Yajun & Xie, Zhongkui & Malhi, Sukhdev S. & Vera, Cecil L. & Zhang, Yubao & Wang, Jinniu, 2009. "Effects of rainfall harvesting and mulching technologies on water use efficiency and crop yield in the semi-arid Loess Plateau, China," Agricultural Water Management, Elsevier, vol. 96(3), pages 374-382, March.
    3. Xie, Zhong-kui & Wang, Ya-jun & Li, Feng-min, 2005. "Effect of plastic mulching on soil water use and spring wheat yield in arid region of northwest China," Agricultural Water Management, Elsevier, vol. 75(1), pages 71-83, July.
    4. Wang, Xiao-Ling & Li, Feng-Min & Jia, Yu & Shi, Wen-Quan, 2005. "Increasing potato yields with additional water and increased soil temperature," Agricultural Water Management, Elsevier, vol. 78(3), pages 181-194, December.
    5. Xie, Zhongkui & Wang, Yajun & Cheng, Guodong & Malhi, Sukhdev S. & Vera, Cecil L. & Guo, Zhihong & Zhang, Yubao, 2010. "Particle-size effects on soil temperature, evaporation, water use efficiency and watermelon yield in fields mulched with gravel and sand in semi-arid Loess Plateau of northwest China," Agricultural Water Management, Elsevier, vol. 97(6), pages 917-923, June.
    6. Liu, Yi & Li, Shiqing & Chen, Fang & Yang, Shenjiao & Chen, Xinping, 2010. "Soil water dynamics and water use efficiency in spring maize (Zea mays L.) fields subjected to different water management practices on the Loess Plateau, China," Agricultural Water Management, Elsevier, vol. 97(5), pages 769-775, May.
    7. Li, Xiao-Yan & Gong, Jia-Dong & Gao, Qian-Zhao & Li, Feng-Rui, 2001. "Incorporation of ridge and furrow method of rainfall harvesting with mulching for crop production under semiarid conditions," Agricultural Water Management, Elsevier, vol. 50(3), pages 173-183, September.
    8. Wang, Yajun & Xie, Zhongkui & Malhi, Sukhdev S. & Vera, Cecil L. & Zhang, Yubao & Guo, Zhihong, 2011. "Effects of gravel–sand mulch, plastic mulch and ridge and furrow rainfall harvesting system combinations on water use efficiency, soil temperature and watermelon yield in a semi-arid Loess Plateau of ," Agricultural Water Management, Elsevier, vol. 101(1), pages 88-92.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Jialin & Pan, Zhihua & Pan, Feifei & He, Di & Pan, Yuying & Han, Guolin & Huang, Na & Zhang, Ziyuan & Yin, Wenjuan & Zhang, Jiale & Peng, Ruiqi & Wang, Zizhong, 2020. "The regional water-conserving and yield-increasing characteristics and suitability of soil tillage practices in Northern China," Agricultural Water Management, Elsevier, vol. 228(C).
    2. Zhang, Runze & Lei, Tong & Wang, Yunfeng & Xu, Jiaxing & Zhang, Panxin & Han, Yan & Hu, Changlu & Yang, Xueyun & Sadras, Victor & Zhang, Shulan, 2022. "Responses of yield and water use efficiency to the interaction between water supply and plastic film mulch in winter wheat-summer fallow system," Agricultural Water Management, Elsevier, vol. 266(C).
    3. Ali, Shahzad & Xu, Yueyue & Ahmad, Irshad & Jia, Qianmin & Ma, Xiangcheng & Sohail, Amir & Manzoor, & Arif, Muhammad & Ren, Xiaolong & Cai, Tie & Zhang, Jiahua & Jia, Zhikuan, 2019. "The ridge-furrow system combined with supplemental irrigation strategies to improves radiation use efficiency and winter wheat productivity in semi-arid regions of China," Agricultural Water Management, Elsevier, vol. 213(C), pages 76-86.
    4. Wang, Huan & Fan, Jun & Fu, Wei & Du, Mengge & Zhou, Gu & Zhou, Mingxing & Hao, Mingde & Shao, Ming'an, 2022. "Good harvests of winter wheat from stored soil water and improved temperature during fallow period by plastic film mulching," Agricultural Water Management, Elsevier, vol. 274(C).
    5. Ali, Shahzad & Jan, Amanullah & Zhang, Peng & Khan, Muhammad Numan & Cai, Tei & Wei, Ting & Ren, Xiaolong & Jia, Qianmin & Han, Qingfang & Jia, Zhikuan, 2016. "Effects of ridge-covering mulches on soil water storage and maize production under simulated rainfall in semiarid regions of China," Agricultural Water Management, Elsevier, vol. 178(C), pages 1-11.
    6. Hu, Yajin & Ma, Penghui & Zhang, Binbin & Hill, Robert L. & Wu, Shufang & Dong, Qin’ge & Chen, Guangjie, 2019. "Exploring optimal soil mulching for the wheat-maize cropping system in sub-humid drought-prone regions in China," Agricultural Water Management, Elsevier, vol. 219(C), pages 59-71.
    7. He, Gang & Wang, Zhaohui & Li, Fucui & Dai, Jian & Li, Qiang & Xue, Cheng & Cao, Hanbing & Wang, Sen & Malhi, Sukhdev S., 2016. "Soil water storage and winter wheat productivity affected by soil surface management and precipitation in dryland of the Loess Plateau, China," Agricultural Water Management, Elsevier, vol. 171(C), pages 1-9.
    8. He, Zhihao & Gong, Kaiyuan & Zhang, Zhiliang & Dong, Wenbiao & Feng, Hao & Yu, Qiang & He, Jianqiang, 2022. "What is the past, present, and future of scientific research on the Yellow River Basin? —A bibliometric analysis," Agricultural Water Management, Elsevier, vol. 262(C).
    9. Zhang, Yan & Ma, Qian & Liu, Donghua & Sun, Lefeng & Ren, Xiaolong & Ali, Shahzad & Zhang, Peng & Jia, Zhikuan, 2018. "Effects of different fertilizer strategies on soil water utilization and maize yield in the ridge and furrow rainfall harvesting system in semiarid regions of China," Agricultural Water Management, Elsevier, vol. 208(C), pages 414-421.
    10. Hu, Yajin & Ma, Penghui & Duan, Chenxiao & Wu, Shufang & Feng, Hao & Zou, Yufeng, 2020. "Black plastic film combined with straw mulching delays senescence and increases summer maize yield in northwest China," Agricultural Water Management, Elsevier, vol. 231(C).
    11. Li, Rong & Hou, Xianqing & Jia, Zhikuan & Han, Qingfang & Ren, Xiaolong & Yang, Baoping, 2013. "Effects on soil temperature, moisture, and maize yield of cultivation with ridge and furrow mulching in the rainfed area of the Loess Plateau, China," Agricultural Water Management, Elsevier, vol. 116(C), pages 101-109.
    12. Wang, Yajun & Xie, Zhongkui & Malhi, Sukhdev S. & Vera, Cecil L. & Zhang, Yubao & Guo, Zhihong, 2011. "Effects of gravel–sand mulch, plastic mulch and ridge and furrow rainfall harvesting system combinations on water use efficiency, soil temperature and watermelon yield in a semi-arid Loess Plateau of ," Agricultural Water Management, Elsevier, vol. 101(1), pages 88-92.
    13. Yildirim, Demet & Cemek, Bilal & Unlukara, Ali, 2022. "The effect of mulched ridge and furrow micro catchment water harvesting on red pepper yield and quality features in Bafra Plain of Northern Turkey," Agricultural Water Management, Elsevier, vol. 262(C).
    14. Xiukang, Wang & Zhanbin, Li & Yingying, Xing, 2015. "Effects of mulching and nitrogen on soil temperature, water content, nitrate-N content and maize yield in the Loess Plateau of China," Agricultural Water Management, Elsevier, vol. 161(C), pages 53-64.
    15. Zhang, Jiyang & Sun, Jingsheng & Duan, Aiwang & Wang, Jinglei & Shen, Xiaojun & Liu, Xiaofei, 2007. "Effects of different planting patterns on water use and yield performance of winter wheat in the Huang-Huai-Hai plain of China," Agricultural Water Management, Elsevier, vol. 92(1-2), pages 41-47, August.
    16. Li, Yue & Chen, Hao & Feng, Hao & Dong, Qin’ge & Wu, Wenjie & Zou, Yufeng & Chau, Henry Wai & Siddique, Kadambot H.M., 2020. "Influence of straw incorporation on soil water utilization and summer maize productivity: A five-year field study on the Loess Plateau of China," Agricultural Water Management, Elsevier, vol. 233(C).
    17. Bouma, Jetske A. & Hegde, Seema S. & Lasage, Ralph, 2016. "Assessing the returns to water harvesting: A meta-analysis," Agricultural Water Management, Elsevier, vol. 163(C), pages 100-109.
    18. Ren, Xiaolong & Jia, Zhikuan & Chen, Xiaoli, 2008. "Rainfall concentration for increasing corn production under semiarid climate," Agricultural Water Management, Elsevier, vol. 95(12), pages 1293-1302, December.
    19. Dong, Qin’ge & Yang, Yuchen & Yu, Kun & Feng, Hao, 2018. "Effects of straw mulching and plastic film mulching on improving soil organic carbon and nitrogen fractions, crop yield and water use efficiency in the Loess Plateau, China," Agricultural Water Management, Elsevier, vol. 201(C), pages 133-143.
    20. Gong, Daozhi & Mei, Xurong & Hao, Weiping & Wang, Hanbo & Caylor, Kelly K., 2017. "Comparison of ET partitioning and crop coefficients between partial plastic mulched and non-mulched maize fields," Agricultural Water Management, Elsevier, vol. 181(C), pages 23-34.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:123:y:2013:i:c:p:71-78. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.