IDEAS home Printed from https://ideas.repec.org/a/gam/jagris/v14y2024i4p626-d1377847.html
   My bibliography  Save this article

Multi-Trait Bayesian Models Enhance the Accuracy of Genomic Prediction in Multi-Breed Reference Populations

Author

Listed:
  • Weining Li

    (State Key Laboratory of Animal Biotech Breeding, College of Animal Science and Technology, China Agricultural University, Haidian, Beijing 100193, China)

  • Meilin Zhang

    (State Key Laboratory of Animal Biotech Breeding, College of Animal Science and Technology, China Agricultural University, Haidian, Beijing 100193, China)

  • Heng Du

    (State Key Laboratory of Animal Biotech Breeding, College of Animal Science and Technology, China Agricultural University, Haidian, Beijing 100193, China)

  • Jianliang Wu

    (Beijing Zhongyu Pig Breeding Co., Ltd., Beijing 100194, China)

  • Lei Zhou

    (State Key Laboratory of Animal Biotech Breeding, College of Animal Science and Technology, China Agricultural University, Haidian, Beijing 100193, China)

  • Jianfeng Liu

    (State Key Laboratory of Animal Biotech Breeding, College of Animal Science and Technology, China Agricultural University, Haidian, Beijing 100193, China)

Abstract

Performing joint genomic predictions for multiple breeds (MBGP) to expand the reference size is a promising strategy for improving the prediction for limited population sizes or phenotypic records for a single breed. This study proposes an MBGP model—mbBayesAB, which treats the same traits of different breeds as potentially genetically related but different, and divides chromosomes into independent blocks to fit heterogeneous genetic (co)variances. Best practices of random effect (co)variance matrix priors in mbBayesAB were analyzed, and the prediction accuracies of mbBayesAB were compared with within-breed (WBGP) and other commonly used MBGP models. The results showed that assigning an inverse Wishart prior to the random effect and obtaining information on the scale of the inverse Wishart prior from the phenotype enabled mbBayesAB to achieve the highest accuracy. When combining two cattle breeds (Limousin and Angus) in reference, mbBayesAB achieved higher accuracy than the WBGP model for two weight traits. For the marbling score trait in pigs, MBGP of the Yorkshire and Landrace breeds led to a 6.27% increase in accuracy for Yorkshire validation using mbBayesAB compared to that using the WBGP model. Therefore, considering heterogeneous genetic (co)variance in MBGP is advantageous. However, determining appropriate priors for (co)variance and hyperparameters is crucial for MBGP.

Suggested Citation

  • Weining Li & Meilin Zhang & Heng Du & Jianliang Wu & Lei Zhou & Jianfeng Liu, 2024. "Multi-Trait Bayesian Models Enhance the Accuracy of Genomic Prediction in Multi-Breed Reference Populations," Agriculture, MDPI, vol. 14(4), pages 1-19, April.
  • Handle: RePEc:gam:jagris:v:14:y:2024:i:4:p:626-:d:1377847
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2077-0472/14/4/626/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2077-0472/14/4/626/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Akinc, Deniz & Vandebroek, Martina, 2018. "Bayesian estimation of mixed logit models: Selecting an appropriate prior for the covariance matrix," Journal of choice modelling, Elsevier, vol. 29(C), pages 133-151.
    2. O’Malley, A. James & Zaslavsky, Alan M., 2008. "Domain-Level Covariance Analysis for Multilevel Survey Data With Structured Nonresponse," Journal of the American Statistical Association, American Statistical Association, vol. 103(484), pages 1405-1418.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wu, Fang & Swait, Joffre & Chen, Yuxin, 2019. "Feature-based attributes and the roles of consumers' perception bias and inference in choice," International Journal of Research in Marketing, Elsevier, vol. 36(2), pages 325-340.
    2. Krueger, Rico & Bierlaire, Michel & Daziano, Ricardo A. & Rashidi, Taha H. & Bansal, Prateek, 2021. "Evaluating the predictive abilities of mixed logit models with unobserved inter- and intra-individual heterogeneity," Journal of choice modelling, Elsevier, vol. 41(C).
    3. Daziano, Ricardo A., 2022. "Willingness to delay charging of electric vehicles," Research in Transportation Economics, Elsevier, vol. 94(C).
    4. Weber, Anett & Steiner, Winfried J., 2021. "Modeling price response from retail sales: An empirical comparison of models with different representations of heterogeneity," European Journal of Operational Research, Elsevier, vol. 294(3), pages 843-859.
    5. Hancock, Thomas O. & Hess, Stephane & Marley, A.A.J. & Choudhury, Charisma F., 2021. "An accumulation of preference: Two alternative dynamic models for understanding transport choices," Transportation Research Part B: Methodological, Elsevier, vol. 149(C), pages 250-282.
    6. Assele, Samson Yaekob & Meulders, Michel & Vandebroek, Martina, 2022. "The value of consideration data in a discrete choice experiment," Journal of choice modelling, Elsevier, vol. 45(C).
    7. Danaf, Mazen & Atasoy, Bilge & Ben-Akiva, Moshe, 2020. "Logit mixture with inter and intra-consumer heterogeneity and flexible mixing distributions," Journal of choice modelling, Elsevier, vol. 35(C).
    8. Moon, Sungho & Kim, Youngwoo & Kim, Minsang & Lee, Jongsu, 2023. "Policy designs to increase public and local acceptance for energy transition in South Korea," Energy Policy, Elsevier, vol. 182(C).
    9. Hang J. Kim & Jörg Drechsler & Katherine J. Thompson, 2021. "Synthetic microdata for establishment surveys under informative sampling," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 184(1), pages 255-281, January.
    10. Krueger, Rico & Rashidi, Taha H. & Vij, Akshay, 2020. "A Dirichlet process mixture model of discrete choice: Comparisons and a case study on preferences for shared automated vehicles," Journal of choice modelling, Elsevier, vol. 36(C).
    11. Akinc, Deniz & Vandebroek, Martina, 2018. "Bayesian estimation of mixed logit models: Selecting an appropriate prior for the covariance matrix," Journal of choice modelling, Elsevier, vol. 29(C), pages 133-151.
    12. Steffen Jahn & Daniel Guhl & Ainslee Erhard, 2024. "Substitution Patterns and Price Response for Plant-Based Meat Alternatives," Rationality and Competition Discussion Paper Series 509, CRC TRR 190 Rationality and Competition.
    13. Prateek Bansal & Rico Krueger & Michel Bierlaire & Ricardo A. Daziano & Taha H. Rashidi, 2019. "P\'olygamma Data Augmentation to address Non-conjugacy in the Bayesian Estimation of Mixed Multinomial Logit Models," Papers 1904.07688, arXiv.org.
    14. Kassie, Girma T. & Zeleke, Fresenbet & Birhanu, Mulugeta Y. & Scarpa, Riccardo, 2020. "Reminder Nudge, Attribute Nonattendance, and Willingness to Pay in a Discrete Choice Experiment," 2020 Annual Meeting, July 26-28, Kansas City, Missouri 304208, Agricultural and Applied Economics Association.
    15. Chenyang Gu & Haiden Huskamp & Julie Donohue & Sharon‐Lise Normand, 2021. "A Bayesian hierarchical model for characterizing the diffusion of new antipsychotic drugs," Biometrics, The International Biometric Society, vol. 77(2), pages 649-660, June.
    16. Junhao Pan & Edward Haksing Ip & Laurette Dubé, 2020. "Multilevel Heterogeneous Factor Analysis and Application to Ecological Momentary Assessment," Psychometrika, Springer;The Psychometric Society, vol. 85(1), pages 75-100, March.
    17. Kim Hang J. & Karr Alan F. & Reiter Jerome P., 2015. "Statistical Disclosure Limitation in the Presence of Edit Rules," Journal of Official Statistics, Sciendo, vol. 31(1), pages 121-138, March.
    18. Youssef M Aboutaleb & Mazen Danaf & Yifei Xie & Moshe Ben-Akiva, 2020. "Sparse Covariance Estimation in Logit Mixture Models," Papers 2001.05034, arXiv.org.
    19. Danaf, Mazen & Guevara, Angelo & Atasoy, Bilge & Ben-Akiva, Moshe, 2020. "Endogeneity in adaptive choice contexts: Choice-based recommender systems and adaptive stated preferences surveys," Journal of choice modelling, Elsevier, vol. 34(C).
    20. Bansal, Prateek & Krueger, Rico & Bierlaire, Michel & Daziano, Ricardo A. & Rashidi, Taha H., 2020. "Bayesian estimation of mixed multinomial logit models: Advances and simulation-based evaluations," Transportation Research Part B: Methodological, Elsevier, vol. 131(C), pages 124-142.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jagris:v:14:y:2024:i:4:p:626-:d:1377847. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.