IDEAS home Printed from https://ideas.repec.org/a/eee/eejocm/v35y2020ics1755534519300934.html
   My bibliography  Save this article

Logit mixture with inter and intra-consumer heterogeneity and flexible mixing distributions

Author

Listed:
  • Danaf, Mazen
  • Atasoy, Bilge
  • Ben-Akiva, Moshe

Abstract

Logit mixture models have gained increasing interest among researchers and practitioners because of their ability to capture unobserved taste heterogeneity. Becker et al. (2018) proposed a Hierarchical Bayes (HB) estimator for logit mixtures with inter- and intra-consumer heterogeneity (defined as taste variations among different individuals and among different choices made by the same individual respectively). However, the underlying model relies on strong assumptions on the inter- and intra-consumer mixing distributions; these distributions are assumed to be normal (or log-normal), and the intra-consumer covariance matrix is assumed to be the same for all individuals. This paper presents a latent class extension to the model and the estimator proposed by Becker et al. (2018) to account for flexible, semi-parametric mixing distributions. This relaxes the normality assumptions and allows different individuals to have different intra-consumer covariance matrices. The proposed model and the HB estimator are validated using real and synthetic data sets, and the models are evaluated using goodness-of-fit statistics and out-of-sample validation. Our results show that when the data comes from two or more distinct classes (with different population means and inter- and intra-consumer covariance matrices), this model results in a better fit and predictions compared to the single class model.

Suggested Citation

  • Danaf, Mazen & Atasoy, Bilge & Ben-Akiva, Moshe, 2020. "Logit mixture with inter and intra-consumer heterogeneity and flexible mixing distributions," Journal of choice modelling, Elsevier, vol. 35(C).
  • Handle: RePEc:eee:eejocm:v:35:y:2020:i:c:s1755534519300934
    DOI: 10.1016/j.jocm.2019.100188
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1755534519300934
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.jocm.2019.100188?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Vij, Akshay & Krueger, Rico, 2017. "Random taste heterogeneity in discrete choice models: Flexible nonparametric finite mixture distributions," Transportation Research Part B: Methodological, Elsevier, vol. 106(C), pages 76-101.
    2. Fosgerau, Mogens & Bierlaire, Michel, 2007. "A practical test for the choice of mixing distribution in discrete choice models," Transportation Research Part B: Methodological, Elsevier, vol. 41(7), pages 784-794, August.
    3. Geweke, John & Keane, Michael, 2001. "Computationally intensive methods for integration in econometrics," Handbook of Econometrics, in: J.J. Heckman & E.E. Leamer (ed.), Handbook of Econometrics, edition 1, volume 5, chapter 56, pages 3463-3568, Elsevier.
    4. Sarrias, Mauricio & Daziano, Ricardo, 2017. "Multinomial Logit Models with Continuous and Discrete Individual Heterogeneity in R: The gmnl Package," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 79(i02).
    5. Rico Krueger & Akshay Vij & Taha H. Rashidi, 2018. "A Dirichlet Process Mixture Model of Discrete Choice," Papers 1801.06296, arXiv.org.
    6. Jeremy T. Fox & Kyoo il Kim & Stephen P. Ryan & Patrick Bajari, 2011. "A simple estimator for the distribution of random coefficients," Quantitative Economics, Econometric Society, vol. 2(3), pages 381-418, November.
    7. Bhat, Chandra R. & Sidharthan, Raghuprasad, 2011. "A simulation evaluation of the maximum approximate composite marginal likelihood (MACML) estimator for mixed multinomial probit models," Transportation Research Part B: Methodological, Elsevier, vol. 45(7), pages 940-953, August.
    8. Bhat, Chandra R., 2011. "The maximum approximate composite marginal likelihood (MACML) estimation of multinomial probit-based unordered response choice models," Transportation Research Part B: Methodological, Elsevier, vol. 45(7), pages 923-939, August.
    9. Train, Kenneth, 2016. "Mixed logit with a flexible mixing distribution," Journal of choice modelling, Elsevier, vol. 19(C), pages 40-53.
    10. Patrick Bajari & Jeremy T. Fox & Stephen P. Ryan, 2007. "Linear Regression Estimation of Discrete Choice Models with Nonparametric Distributions of Random Coefficients," American Economic Review, American Economic Association, vol. 97(2), pages 459-463, May.
    11. William H. Greene & David A. Hensher, 2013. "Revealing additional dimensions of preference heterogeneity in a latent class mixed multinomial logit model," Applied Economics, Taylor & Francis Journals, vol. 45(14), pages 1897-1902, May.
    12. Bhat, Chandra R. & Sardesai, Rupali, 2006. "The impact of stop-making and travel time reliability on commute mode choice," Transportation Research Part B: Methodological, Elsevier, vol. 40(9), pages 709-730, November.
    13. Stephane Hess, 2014. "Latent class structures: taste heterogeneity and beyond," Chapters, in: Stephane Hess & Andrew Daly (ed.), Handbook of Choice Modelling, chapter 14, pages 311-330, Edward Elgar Publishing.
    14. Geweke, John & Keane, Michael, 2007. "Smoothly mixing regressions," Journal of Econometrics, Elsevier, vol. 138(1), pages 252-290, May.
    15. Hamparsum Bozdogan, 1987. "Model selection and Akaike's Information Criterion (AIC): The general theory and its analytical extensions," Psychometrika, Springer;The Psychometric Society, vol. 52(3), pages 345-370, September.
    16. Elrod, Terry & Keane, Michael, 1995. "A Factor-Analytic Probit Model for Representing the Market Structure in Panel Data," MPRA Paper 52434, University Library of Munich, Germany.
    17. Bhat, Chandra R. & Castelar, Saul, 2002. "A unified mixed logit framework for modeling revealed and stated preferences: formulation and application to congestion pricing analysis in the San Francisco Bay area," Transportation Research Part B: Methodological, Elsevier, vol. 36(7), pages 593-616, August.
    18. Akinc, Deniz & Vandebroek, Martina, 2018. "Bayesian estimation of mixed logit models: Selecting an appropriate prior for the covariance matrix," Journal of choice modelling, Elsevier, vol. 29(C), pages 133-151.
    19. Hess, Stephane & Palma, David, 2019. "Apollo: A flexible, powerful and customisable freeware package for choice model estimation and application," Journal of choice modelling, Elsevier, vol. 32(C), pages 1-1.
    20. Angel Bujosa & Antoni Riera & Robert Hicks, 2010. "Combining Discrete and Continuous Representations of Preference Heterogeneity: A Latent Class Approach," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 47(4), pages 477-493, December.
    21. Michael Keane & Nada Wasi, 2013. "Comparing Alternative Models Of Heterogeneity In Consumer Choice Behavior," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 28(6), pages 1018-1045, September.
    22. Hess, Stephane & Rose, John M., 2009. "Allowing for intra-respondent variations in coefficients estimated on repeated choice data," Transportation Research Part B: Methodological, Elsevier, vol. 43(6), pages 708-719, July.
    23. María Yáñez & Elisabetta Cherchi & Benjamin Heydecker & Juan de Dios Ortúzar, 2011. "On the Treatment of Repeated Observations in Panel Data: Efficiency of Mixed Logit Parameter Estimates," Networks and Spatial Economics, Springer, vol. 11(3), pages 393-418, September.
    24. Allenby, Greg M. & Rossi, Peter E., 1998. "Marketing models of consumer heterogeneity," Journal of Econometrics, Elsevier, vol. 89(1-2), pages 57-78, November.
    25. Ben-Akiva, Moshe & McFadden, Daniel & Train, Kenneth, 2019. "Foundations of Stated Preference Elicitation: Consumer Behavior and Choice-based Conjoint Analysis," Foundations and Trends(R) in Econometrics, now publishers, vol. 10(1-2), pages 1-144, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Anoek Castelein & Dennis Fok & Richard Paap, 2020. "A multinomial and rank-ordered logit model with inter- and intra-individual heteroscedasticity," Tinbergen Institute Discussion Papers 20-069/III, Tinbergen Institute.
    2. Gusarov, N. & Talebijmalabad, A. & Joly, I., 2020. "Exploration of model performances in the presence of heterogeneous preferences and random effects utilities awareness," Working Papers 2020-12, Grenoble Applied Economics Laboratory (GAEL).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tinessa, Fiore & Marzano, Vittorio & Papola, Andrea, 2020. "Mixing distributions of tastes with a Combination of Nested Logit (CoNL) kernel: Formulation and performance analysis," Transportation Research Part B: Methodological, Elsevier, vol. 141(C), pages 1-23.
    2. Krueger, Rico & Rashidi, Taha H. & Vij, Akshay, 2020. "A Dirichlet process mixture model of discrete choice: Comparisons and a case study on preferences for shared automated vehicles," Journal of choice modelling, Elsevier, vol. 36(C).
    3. Bansal, Prateek & Hurtubia, Ricardo & Tirachini, Alejandro & Daziano, Ricardo A., 2019. "Flexible estimates of heterogeneity in crowding valuation in the New York City subway," Journal of choice modelling, Elsevier, vol. 31(C), pages 124-140.
    4. Youssef M Aboutaleb & Mazen Danaf & Yifei Xie & Moshe Ben-Akiva, 2020. "Sparse Covariance Estimation in Logit Mixture Models," Papers 2001.05034, arXiv.org.
    5. Rico Krueger & Taha H. Rashidi & Akshay Vij, 2019. "Semi-Parametric Hierarchical Bayes Estimates of New Yorkers' Willingness to Pay for Features of Shared Automated Vehicle Services," Papers 1907.09639, arXiv.org.
    6. Akshay Vij & Rico Krueger, 2018. "Random taste heterogeneity in discrete choice models: Flexible nonparametric finite mixture distributions," Papers 1802.02299, arXiv.org.
    7. Vij, Akshay & Krueger, Rico, 2017. "Random taste heterogeneity in discrete choice models: Flexible nonparametric finite mixture distributions," Transportation Research Part B: Methodological, Elsevier, vol. 106(C), pages 76-101.
    8. Krueger, Rico & Bierlaire, Michel & Daziano, Ricardo A. & Rashidi, Taha H. & Bansal, Prateek, 2021. "Evaluating the predictive abilities of mixed logit models with unobserved inter- and intra-individual heterogeneity," Journal of choice modelling, Elsevier, vol. 41(C).
    9. Bansal, Prateek & Daziano, Ricardo A & Guerra, Erick, 2018. "Minorization-Maximization (MM) algorithms for semiparametric logit models: Bottlenecks, extensions, and comparisons," Transportation Research Part B: Methodological, Elsevier, vol. 115(C), pages 17-40.
    10. Stephane Hess, 2014. "Latent class structures: taste heterogeneity and beyond," Chapters, in: Stephane Hess & Andrew Daly (ed.), Handbook of Choice Modelling, chapter 14, pages 311-330, Edward Elgar Publishing.
    11. Bansal, Prateek & Daziano, Ricardo A. & Achtnicht, Martin, 2018. "Comparison of parametric and semiparametric representations of unobserved preference heterogeneity in logit models," Journal of choice modelling, Elsevier, vol. 27(C), pages 97-113.
    12. Rico Krueger & Akshay Vij & Taha H. Rashidi, 2018. "A Dirichlet Process Mixture Model of Discrete Choice," Papers 1801.06296, arXiv.org.
    13. S. Van Cranenburgh & S. Wang & A. Vij & F. Pereira & J. Walker, 2021. "Choice modelling in the age of machine learning -- discussion paper," Papers 2101.11948, arXiv.org, revised Nov 2021.
    14. Sfeir, Georges & Abou-Zeid, Maya & Rodrigues, Filipe & Pereira, Francisco Camara & Kaysi, Isam, 2021. "Latent class choice model with a flexible class membership component: A mixture model approach," Journal of choice modelling, Elsevier, vol. 41(C).
    15. Bansal, Prateek & Daziano, Ricardo A. & Achtnicht, Martin, 2018. "Extending the logit-mixed logit model for a combination of random and fixed parameters," Journal of choice modelling, Elsevier, vol. 27(C), pages 88-96.
    16. Michael P. Keane & Nada Wasi, 2013. "The Structure of Consumer Taste Heterogeneity in Revealed vs. Stated Preference Data," Economics Papers 2013-W10, Economics Group, Nuffield College, University of Oxford.
    17. Xiong, Yingge & Mannering, Fred L., 2013. "The heterogeneous effects of guardian supervision on adolescent driver-injury severities: A finite-mixture random-parameters approach," Transportation Research Part B: Methodological, Elsevier, vol. 49(C), pages 39-54.
    18. Keane, Michael P. & Wasi, Nada, 2016. "How to model consumer heterogeneity? Lessons from three case studies on SP and RP data," Research in Economics, Elsevier, vol. 70(2), pages 197-231.
    19. Jia, Wenjian & Chen, T. Donna, 2023. "Investigating heterogeneous preferences for plug-in electric vehicles: Policy implications from different choice models," Transportation Research Part A: Policy and Practice, Elsevier, vol. 173(C).
    20. Becker, Felix & Danaf, Mazen & Song, Xiang & Atasoy, Bilge & Ben-Akiva, Moshe, 2018. "Bayesian estimator for Logit Mixtures with inter- and intra-consumer heterogeneity," Transportation Research Part B: Methodological, Elsevier, vol. 117(PA), pages 1-17.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:eejocm:v:35:y:2020:i:c:s1755534519300934. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/journal-of-choice-modelling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.