IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1904.07688.html
   My bibliography  Save this paper

P\'olygamma Data Augmentation to address Non-conjugacy in the Bayesian Estimation of Mixed Multinomial Logit Models

Author

Listed:
  • Prateek Bansal
  • Rico Krueger
  • Michel Bierlaire
  • Ricardo A. Daziano
  • Taha H. Rashidi

Abstract

The standard Gibbs sampler of Mixed Multinomial Logit (MMNL) models involves sampling from conditional densities of utility parameters using Metropolis-Hastings (MH) algorithm due to unavailability of conjugate prior for logit kernel. To address this non-conjugacy concern, we propose the application of P\'olygamma data augmentation (PG-DA) technique for the MMNL estimation. The posterior estimates of the augmented and the default Gibbs sampler are similar for two-alternative scenario (binary choice), but we encounter empirical identification issues in the case of more alternatives ($J \geq 3$).

Suggested Citation

  • Prateek Bansal & Rico Krueger & Michel Bierlaire & Ricardo A. Daziano & Taha H. Rashidi, 2019. "P\'olygamma Data Augmentation to address Non-conjugacy in the Bayesian Estimation of Mixed Multinomial Logit Models," Papers 1904.07688, arXiv.org.
  • Handle: RePEc:arx:papers:1904.07688
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1904.07688
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Train,Kenneth E., 2009. "Discrete Choice Methods with Simulation," Cambridge Books, Cambridge University Press, number 9780521766555, January.
    2. Nicholas G. Polson & James G. Scott & Jesse Windle, 2013. "Bayesian Inference for Logistic Models Using Pólya--Gamma Latent Variables," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 108(504), pages 1339-1349, December.
    3. Akinc, Deniz & Vandebroek, Martina, 2018. "Bayesian estimation of mixed logit models: Selecting an appropriate prior for the covariance matrix," Journal of choice modelling, Elsevier, vol. 29(C), pages 133-151.
    4. Daniel McFadden & Kenneth Train, 2000. "Mixed MNL models for discrete response," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 15(5), pages 447-470.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Krueger, Rico & Bierlaire, Michel & Daziano, Ricardo A. & Rashidi, Taha H. & Bansal, Prateek, 2021. "Evaluating the predictive abilities of mixed logit models with unobserved inter- and intra-individual heterogeneity," Journal of choice modelling, Elsevier, vol. 41(C).
    2. Krueger, Rico & Rashidi, Taha H. & Vij, Akshay, 2020. "A Dirichlet process mixture model of discrete choice: Comparisons and a case study on preferences for shared automated vehicles," Journal of choice modelling, Elsevier, vol. 36(C).
    3. Kassie, Girma T. & Zeleke, Fresenbet & Birhanu, Mulugeta Y. & Scarpa, Riccardo, 2020. "Reminder Nudge, Attribute Nonattendance, and Willingness to Pay in a Discrete Choice Experiment," 2020 Annual Meeting, July 26-28, Kansas City, Missouri 304208, Agricultural and Applied Economics Association.
    4. Youssef M Aboutaleb & Mazen Danaf & Yifei Xie & Moshe Ben-Akiva, 2020. "Sparse Covariance Estimation in Logit Mixture Models," Papers 2001.05034, arXiv.org.
    5. Bansal, Prateek & Krueger, Rico & Bierlaire, Michel & Daziano, Ricardo A. & Rashidi, Taha H., 2020. "Bayesian estimation of mixed multinomial logit models: Advances and simulation-based evaluations," Transportation Research Part B: Methodological, Elsevier, vol. 131(C), pages 124-142.
    6. Rodrigues, Filipe, 2022. "Scaling Bayesian inference of mixed multinomial logit models to large datasets," Transportation Research Part B: Methodological, Elsevier, vol. 158(C), pages 1-17.
    7. Rico Krueger & Taha H. Rashidi & Akshay Vij, 2019. "Semi-Parametric Hierarchical Bayes Estimates of New Yorkers' Willingness to Pay for Features of Shared Automated Vehicle Services," Papers 1907.09639, arXiv.org.
    8. Rico Krueger & Prateek Bansal & Michel Bierlaire & Ricardo A. Daziano & Taha H. Rashidi, 2019. "Variational Bayesian Inference for Mixed Logit Models with Unobserved Inter- and Intra-Individual Heterogeneity," Papers 1905.00419, arXiv.org, revised Jan 2020.
    9. Prateek Bansal & Rico Krueger & Michel Bierlaire & Ricardo A. Daziano & Taha H. Rashidi, 2019. "Bayesian Estimation of Mixed Multinomial Logit Models: Advances and Simulation-Based Evaluations," Papers 1904.03647, arXiv.org, revised Dec 2019.
    10. Ortega, David L. & Wang, H. Holly & Wu, Laping & Hong, Soo Jeong, 2015. "Retail channel and consumer demand for food quality in China," China Economic Review, Elsevier, vol. 36(C), pages 359-366.
    11. Pereira, Pedro & Ribeiro, Tiago, 2011. "The impact on broadband access to the Internet of the dual ownership of telephone and cable networks," International Journal of Industrial Organization, Elsevier, vol. 29(2), pages 283-293, March.
    12. Choi, Andy S., 2013. "Nonmarket values of major resources in the Korean DMZ areas: A test of distance decay," Ecological Economics, Elsevier, vol. 88(C), pages 97-107.
    13. Doherty, Edel & Campbell, Danny, 2011. "Demand for improved food safety and quality: a cross-regional comparison," 85th Annual Conference, April 18-20, 2011, Warwick University, Coventry, UK 108791, Agricultural Economics Society.
    14. Abdurrahman B. Aydemir & Erkan Duman, 2021. "Migrant Networks and Destination Choice: Evidence from Moves across Turkish Provinces," Koç University-TUSIAD Economic Research Forum Working Papers 2109, Koc University-TUSIAD Economic Research Forum.
    15. Fosgerau, Mogens & Bierlaire, Michel, 2007. "A practical test for the choice of mixing distribution in discrete choice models," Transportation Research Part B: Methodological, Elsevier, vol. 41(7), pages 784-794, August.
    16. Paleti, Rajesh, 2018. "Generalized multinomial probit Model: Accommodating constrained random parameters," Transportation Research Part B: Methodological, Elsevier, vol. 118(C), pages 248-262.
    17. Veneziani, Mario & Sckokai, Paolo & Moro, Daniele, 2012. "Consumers’ willingness to pay for a functional food," 2012 First Congress, June 4-5, 2012, Trento, Italy 124101, Italian Association of Agricultural and Applied Economics (AIEAA).
    18. Kesternich, Iris & Heiss, Florian & McFadden, Daniel & Winter, Joachim, 2013. "Suit the action to the word, the word to the action: Hypothetical choices and real decisions in Medicare Part D," Journal of Health Economics, Elsevier, vol. 32(6), pages 1313-1324.
    19. Jianhua Wang & Jiaye Ge & Yuting Ma, 2018. "Urban Chinese Consumers’ Willingness to Pay for Pork with Certified Labels: A Discrete Choice Experiment," Sustainability, MDPI, vol. 10(3), pages 1-14, February.
    20. Haoying Wang & Guohui Wu, 2022. "Modeling discrete choices with large fine-scale spatial data: opportunities and challenges," Journal of Geographical Systems, Springer, vol. 24(3), pages 325-351, July.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1904.07688. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.