IDEAS home Printed from https://ideas.repec.org/a/eee/transb/v149y2021icp250-282.html
   My bibliography  Save this article

An accumulation of preference: Two alternative dynamic models for understanding transport choices

Author

Listed:
  • Hancock, Thomas O.
  • Hess, Stephane
  • Marley, A.A.J.
  • Choudhury, Charisma F.

Abstract

Interest in behavioural realism has gradually led to the introduction of alternatives to random utility models (RUMs) as a paradigm for representing choice behaviour, with notable interest, for example, in random regret minimisation (RRM). These more general models continue to rely on a framework where a single value function is calculated for each alternative in each choice setting, and the choice probabilities are calculated by comparing these value functions across alternatives. By contrast, research in mathematical psychology has used a more dynamic approach, where the preference value of each alternative updates over time in a given situation while the decision maker is deliberating about the choice to make. These accumulator models are well suited to accommodating a variety of context effects, and have been shown to give good performance for data collected in laboratory-based settings. The present paper considers two such accumulator models, namely decision field theory (DFT) and the multi-attribute linear ballistic accumulator (MLBA), and addresses limitations that have prevented their use in travel behaviour research. The methodological additions include the ability to capture the influence of socio-demographics, the presence of underlying preferences for specific alternatives, and/or the representation of attributes that have opposite effects on choice probabilities. We develop what we believe to be the first in-depth simultaneous comparison of DFT and MLBA with typical discrete choice models, and test both DFT and MLBA on a revealed preference dataset. We find that each model outperforms typical RUM and RRM implementations for both in-sample estimation and out-of-sample prediction, including in a large scale simulation experiment.

Suggested Citation

  • Hancock, Thomas O. & Hess, Stephane & Marley, A.A.J. & Choudhury, Charisma F., 2021. "An accumulation of preference: Two alternative dynamic models for understanding transport choices," Transportation Research Part B: Methodological, Elsevier, vol. 149(C), pages 250-282.
  • Handle: RePEc:eee:transb:v:149:y:2021:i:c:p:250-282
    DOI: 10.1016/j.trb.2021.04.001
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0191261521000576
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.trb.2021.04.001?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Masiero, Lorenzo & Hensher, David A., 2010. "Analyzing loss aversion and diminishing sensitivity in a freight transport stated choice experiment," Transportation Research Part A: Policy and Practice, Elsevier, vol. 44(5), pages 349-358, June.
    2. Joshua I. Gold & Michael N. Shadlen, 2000. "Representation of a perceptual decision in developing oculomotor commands," Nature, Nature, vol. 404(6776), pages 390-394, March.
    3. Akinc, Deniz & Vandebroek, Martina, 2018. "Bayesian estimation of mixed logit models: Selecting an appropriate prior for the covariance matrix," Journal of choice modelling, Elsevier, vol. 29(C), pages 133-151.
    4. Hancock, Thomas O. & Hess, Stephane & Choudhury, Charisma F., 2018. "Decision field theory: Improvements to current methodology and comparisons with standard choice modelling techniques," Transportation Research Part B: Methodological, Elsevier, vol. 107(C), pages 18-40.
    5. Daly, Andrew & Hess, Stephane & de Jong, Gerard, 2012. "Calculating errors for measures derived from choice modelling estimates," Transportation Research Part B: Methodological, Elsevier, vol. 46(2), pages 333-341.
    6. Ben McNair & David Hensher & Jeff Bennett, 2012. "Modelling Heterogeneity in Response Behaviour Towards a Sequence of Discrete Choice Questions: A Probabilistic Decision Process Model," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 51(4), pages 599-616, April.
    7. Eddelbuettel, Dirk & Francois, Romain, 2011. "Rcpp: Seamless R and C++ Integration," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 40(i08).
    8. Cirillo, Cinzia & Bastin, Fabian & Hetrakul, Pratt, 2018. "Dynamic discrete choice model for railway ticket cancellation and exchange decisions," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 110(C), pages 137-146.
    9. Busemeyer, Jerome R. & Townsend, James T., 1992. "Fundamental derivations from decision field theory," Mathematical Social Sciences, Elsevier, vol. 23(3), pages 255-282, June.
    10. Hess, Stephane & Rose, John M. & Hensher, David A., 2008. "Asymmetric preference formation in willingness to pay estimates in discrete choice models," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 44(5), pages 847-863, September.
    11. Fosgerau, Mogens, 2006. "Investigating the distribution of the value of travel time savings," Transportation Research Part B: Methodological, Elsevier, vol. 40(8), pages 688-707, September.
    12. Kaufman, Bruce E., 1990. "A new theory of satisficing," Journal of Behavioral Economics, Elsevier, vol. 19(1), pages 35-51.
    13. Stathopoulos, Amanda & Hess, Stephane, 2012. "Revisiting reference point formation, gains–losses asymmetry and non-linear sensitivities with an emphasis on attribute specific treatment," Transportation Research Part A: Policy and Practice, Elsevier, vol. 46(10), pages 1673-1689.
    14. Hess, Stephane & Palma, David, 2019. "Apollo: A flexible, powerful and customisable freeware package for choice model estimation and application," Journal of choice modelling, Elsevier, vol. 32(C), pages 1-1.
    15. Arne Henningsen & Ott Toomet, 2011. "maxLik: A package for maximum likelihood estimation in R," Computational Statistics, Springer, vol. 26(3), pages 443-458, September.
    16. Liu, Yan & Cirillo, Cinzia, 2018. "A generalized dynamic discrete choice model for green vehicle adoption," Transportation Research Part A: Policy and Practice, Elsevier, vol. 114(PB), pages 288-302.
    17. Chorus, Caspar G. & Arentze, Theo A. & Timmermans, Harry J.P., 2008. "A Random Regret-Minimization model of travel choice," Transportation Research Part B: Methodological, Elsevier, vol. 42(1), pages 1-18, January.
    18. Swait, Joffre, 2001. "A non-compensatory choice model incorporating attribute cutoffs," Transportation Research Part B: Methodological, Elsevier, vol. 35(10), pages 903-928, November.
    19. Hess, Stephane & Stathopoulos, Amanda, 2013. "A mixed random utility — Random regret model linking the choice of decision rule to latent character traits," Journal of choice modelling, Elsevier, vol. 9(C), pages 27-38.
    20. Thomas Otter & Joe Johnson & Jörg Rieskamp & Greg Allenby & Jeff Brazell & Adele Diederich & J. Hutchinson & Steven MacEachern & Shiling Ruan & Jim Townsend, 2008. "Sequential sampling models of choice: Some recent advances," Marketing Letters, Springer, vol. 19(3), pages 255-267, December.
    21. Busemeyer, Jerome R. & Diederich, Adele, 2002. "Survey of decision field theory," Mathematical Social Sciences, Elsevier, vol. 43(3), pages 345-370, July.
    22. M. Bierlaire & M. Thémans & N. Zufferey, 2010. "A Heuristic for Nonlinear Global Optimization," INFORMS Journal on Computing, INFORMS, vol. 22(1), pages 59-70, February.
    23. Hancock, Thomas O. & Broekaert, Jan & Hess, Stephane & Choudhury, Charisma F., 2020. "Quantum probability: A new method for modelling travel behaviour," Transportation Research Part B: Methodological, Elsevier, vol. 139(C), pages 165-198.
    24. Stephane Hess & Andrew Daly & Richard Batley, 2018. "Revisiting consistency with random utility maximisation: theory and implications for practical work," Theory and Decision, Springer, vol. 84(2), pages 181-204, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. David A. J. Meester & Stephane Hess & John Buckell & Thomas O. Hancock, 2023. "Can decision field theory enhance our understanding of health‐based choices? Evidence from risky health behaviors," Health Economics, John Wiley & Sons, Ltd., vol. 32(8), pages 1710-1732, August.
    2. Epping, Gunnar P. & Kvam, Peter D. & Pleskac, Timothy J. & Busemeyer, Jerome R., 2023. "Open system model of choice and response time," Journal of choice modelling, Elsevier, vol. 49(C).
    3. Bansal, Prateek & Kim, Eui-Jin & Ozdemir, Semra, 2024. "Discrete choice experiments with eye-tracking: How far we have come and ways forward," Journal of choice modelling, Elsevier, vol. 51(C).
    4. Szép, Teodóra & van Cranenburgh, Sander & Chorus, Caspar G., 2022. "Decision Field Theory: Equivalence with probit models and guidance for identifiability," Journal of choice modelling, Elsevier, vol. 45(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hancock, Thomas O. & Broekaert, Jan & Hess, Stephane & Choudhury, Charisma F., 2020. "Quantum probability: A new method for modelling travel behaviour," Transportation Research Part B: Methodological, Elsevier, vol. 139(C), pages 165-198.
    2. Hancock, Thomas O. & Hess, Stephane & Choudhury, Charisma F., 2018. "Decision field theory: Improvements to current methodology and comparisons with standard choice modelling techniques," Transportation Research Part B: Methodological, Elsevier, vol. 107(C), pages 18-40.
    3. Hess, Stephane & Palma, David, 2019. "Apollo: A flexible, powerful and customisable freeware package for choice model estimation and application," Journal of choice modelling, Elsevier, vol. 32(C), pages 1-1.
    4. David A. J. Meester & Stephane Hess & John Buckell & Thomas O. Hancock, 2023. "Can decision field theory enhance our understanding of health‐based choices? Evidence from risky health behaviors," Health Economics, John Wiley & Sons, Ltd., vol. 32(8), pages 1710-1732, August.
    5. Scott, Anthony & Witt, Julia, 2020. "Loss aversion, reference dependence and diminishing sensitivity in choice experiments," Journal of choice modelling, Elsevier, vol. 37(C).
    6. Stephane Hess & Amanda Stathopoulos & Andrew Daly, 2012. "Allowing for heterogeneous decision rules in discrete choice models: an approach and four case studies," Transportation, Springer, vol. 39(3), pages 565-591, May.
    7. Stephane Hess & Andrew Daly & Maria Börjesson, 2020. "A critical appraisal of the use of simple time-money trade-offs for appraisal value of travel time measures," Transportation, Springer, vol. 47(3), pages 1541-1570, June.
    8. Hancock, Thomas O. & Broekaert, Jan & Hess, Stephane & Choudhury, Charisma F., 2020. "Quantum choice models: A flexible new approach for understanding moral decision-making," Journal of choice modelling, Elsevier, vol. 37(C).
    9. Feo-Valero, María & Arencibia, Ana Isabel & Román, Concepción, 2016. "Analyzing discrepancies between willingness to pay and willingness to accept for freight transport attributes," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 89(C), pages 151-164.
    10. Poudel, Niranjan & Singleton, Patrick A., 2024. "Willingness to pay for changes in travel time and work time: A stated choice experiment of US commuters," Research in Transportation Economics, Elsevier, vol. 103(C).
    11. Haghani, Milad & Bliemer, Michiel C.J. & Hensher, David A., 2021. "The landscape of econometric discrete choice modelling research," Journal of choice modelling, Elsevier, vol. 40(C).
    12. Hess, Stephane & Stathopoulos, Amanda, 2013. "A mixed random utility — Random regret model linking the choice of decision rule to latent character traits," Journal of choice modelling, Elsevier, vol. 9(C), pages 27-38.
    13. Hancock, Thomas O. & Hess, Stephane & Daly, Andrew & Fox, James, 2020. "Using a sequential latent class approach for model averaging: Benefits in forecasting and behavioural insights," Transportation Research Part A: Policy and Practice, Elsevier, vol. 139(C), pages 429-454.
    14. Gonzalez-Valdes, Felipe & Heydecker, Benjamin G. & Ortúzar, Juan de Dios, 2022. "Quantifying behavioural difference in latent class models to assess empirical identifiability: Analytical development and application to multiple heuristics," Journal of choice modelling, Elsevier, vol. 43(C).
    15. Neumann, Nico & Böckenholt, Ulf, 2014. "A Meta-analysis of Loss Aversion in Product Choice," Journal of Retailing, Elsevier, vol. 90(2), pages 182-197.
    16. Szép, Teodóra & van Cranenburgh, Sander & Chorus, Caspar G., 2022. "Decision Field Theory: Equivalence with probit models and guidance for identifiability," Journal of choice modelling, Elsevier, vol. 45(C).
    17. Molloy, Joseph & Becker, Felix & Schmid, Basil & Axhausen, Kay W., 2021. "mixl: An open-source R package for estimating complex choice models on large datasets," Journal of choice modelling, Elsevier, vol. 39(C).
    18. Amanda Stathopoulos & Stephane Hess, 2011. "Referencing, Gains-Losses Asymmetry And Non-Linear Sensitivities In Commuter Decisions: One Size Does Not Fit All!," Working Papers 0511, CREI Università degli Studi Roma Tre, revised 2011.
    19. Contu, Davide & Strazzera, Elisabetta, 2022. "Testing for saliency-led choice behavior in discrete choice modeling: An application in the context of preferences towards nuclear energy in Italy," Journal of choice modelling, Elsevier, vol. 44(C).
    20. Gonzalez-Valdes, Felipe & Raveau, Sebastián, 2018. "Identifying the presence of heterogeneous discrete choice heuristics at an individual level," Journal of choice modelling, Elsevier, vol. 28(C), pages 28-40.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transb:v:149:y:2021:i:c:p:250-282. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/548/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.