IDEAS home Printed from https://ideas.repec.org/a/bla/jorssa/v184y2021i1p255-281.html
   My bibliography  Save this article

Synthetic microdata for establishment surveys under informative sampling

Author

Listed:
  • Hang J. Kim
  • Jörg Drechsler
  • Katherine J. Thompson

Abstract

Many agencies are investigating whether releasing synthetic microdata could be a viable dissemination strategy for highly sensitive data, such as business data, for which disclosure avoidance regulations otherwise prohibit the release of public use microdata. However, existing methods assume that the original data either cover the entire population or comprise a simple random sample, which limits the application of these methods in the context of survey data with unequal weights. This paper discusses synthetic data generation under informative sampling. To utilise design information in survey weights, we rely on the pseudo likelihood approach when building a hierarchical Bayesian model to estimate the distribution of the finite population. Then, synthetic populations are randomly drawn from the estimated finite population density. We present the full conditional distributions of the Markov chain Monte Carlo algorithm for posterior inference with the pseudo likelihood function. Using simulation studies, we show that the suggested synthetic data approach offers high utility for design‐based and model‐based analyses while offering a high level of disclosure protection. We apply the proposed method to a subset of the 2012 U.S. Economic Census and evaluate results with utility metrics and disclosure avoidance metrics under data attacker scenarios commonly used for business data.

Suggested Citation

  • Hang J. Kim & Jörg Drechsler & Katherine J. Thompson, 2021. "Synthetic microdata for establishment surveys under informative sampling," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 184(1), pages 255-281, January.
  • Handle: RePEc:bla:jorssa:v:184:y:2021:i:1:p:255-281
    DOI: 10.1111/rssa.12622
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/rssa.12622
    Download Restriction: no

    File URL: https://libkey.io/10.1111/rssa.12622?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Hang J. Kim & Jerome P. Reiter & Quanli Wang & Lawrence H. Cox & Alan F. Karr, 2014. "Multiple Imputation of Missing or Faulty Values Under Linear Constraints," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 32(3), pages 375-386, July.
    2. Lawrence H. Cox & Alan F. Karr & Satkartar K. Kinney, 2011. "Risk‐Utility Paradigms for Statistical Disclosure Limitation: How to Think, But Not How to Act," International Statistical Review, International Statistical Institute, vol. 79(2), pages 160-183, August.
    3. Joshua Snoke & Gillian M. Raab & Beata Nowok & Chris Dibben & Aleksandra Slavkovic, 2018. "General and specific utility measures for synthetic data," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 181(3), pages 663-688, June.
    4. Hang J. Kim & Jerome P. Reiter & Alan F. Karr, 2018. "Simultaneous edit-imputation and disclosure limitation for business establishment data," Journal of Applied Statistics, Taylor & Francis Journals, vol. 45(1), pages 63-82, January.
    5. Jae Kwang Kim & J. Michael Brick & Wayne A. Fuller & Graham Kalton, 2006. "On the bias of the multiple‐imputation variance estimator in survey sampling," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 68(3), pages 509-521, June.
    6. Satkartar K. Kinney & Jerome P. Reiter & Arnold P. Reznek & Javier Miranda & Ron S. Jarmin & John M. Abowd, 2011. "Towards Unrestricted Public Use Business Microdata: The Synthetic Longitudinal Business Database," International Statistical Review, International Statistical Institute, vol. 79(3), pages 362-384, December.
    7. Dunson, David B. & Xing, Chuanhua, 2009. "Nonparametric Bayes Modeling of Multivariate Categorical Data," Journal of the American Statistical Association, American Statistical Association, vol. 104(487), pages 1042-1051.
    8. Hang J. Kim & Lawrence H. Cox & Alan F. Karr & Jerome P. Reiter & Quanli Wang, 2015. "Simultaneous Edit-Imputation for Continuous Microdata," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 110(511), pages 987-999, September.
    9. Hang J. Kim & Lawrence H. Cox & Alan F. Karr & Jerome P. Reiter & Quanli Wang, 2015. "Simultaneous Edit-Imputation for Continuous Microdata," Working Papers 15-44, Center for Economic Studies, U.S. Census Bureau.
    10. Daniel Manrique-Vallier & Jerome P. Reiter, 2017. "Bayesian Simultaneous Edit and Imputation for Multivariate Categorical Data," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 112(520), pages 1708-1719, October.
    11. O’Malley, A. James & Zaslavsky, Alan M., 2008. "Domain-Level Covariance Analysis for Multilevel Survey Data With Structured Nonresponse," Journal of the American Statistical Association, American Statistical Association, vol. 103(484), pages 1405-1418.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hang J. Kim & Jerome P. Reiter & Alan F. Karr, 2018. "Simultaneous edit-imputation and disclosure limitation for business establishment data," Journal of Applied Statistics, Taylor & Francis Journals, vol. 45(1), pages 63-82, January.
    2. Jared S. Murray & Jerome P. Reiter, 2016. "Multiple Imputation of Missing Categorical and Continuous Values via Bayesian Mixture Models With Local Dependence," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 111(516), pages 1466-1479, October.
    3. James Jackson & Robin Mitra & Brian Francis & Iain Dove, 2022. "Using saturated count models for user‐friendly synthesis of large confidential administrative databases," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 185(4), pages 1613-1643, October.
    4. Orozco Vázquez Miguel, 2023. "Misallocation of Resources, Firm Characteristics, and Structural Factors: Evidence from Mexico," Working Papers 2023-11, Banco de México.
    5. Ian Lundberg & Arvind Narayanan & Karen Levy & Matthew Salganik, 2018. "Privacy, ethics, and data access: A case study of the Fragile Families Challenge," Working Papers wp18-09-ff, Princeton University, School of Public and International Affairs, Center for Research on Child Wellbeing..
    6. Paiva Thais & Reiter Jerome P., 2017. "Stop or Continue Data Collection: A Nonignorable Missing Data Approach for Continuous Variables," Journal of Official Statistics, Sciendo, vol. 33(3), pages 579-599, September.
    7. Kim Hang J. & Karr Alan F. & Reiter Jerome P., 2015. "Statistical Disclosure Limitation in the Presence of Edit Rules," Journal of Official Statistics, Sciendo, vol. 31(1), pages 121-138, March.
    8. Daniel Manrique‐Vallier & Jingchen Hu, 2018. "Bayesian non‐parametric generation of fully synthetic multivariate categorical data in the presence of structural zeros," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 181(3), pages 635-647, June.
    9. Satkartar K. Kinney & Jerome P. Reiter & Javier Miranda, 2014. "Improving The Synthetic Longitudinal Business Database," Working Papers 14-12, Center for Economic Studies, U.S. Census Bureau.
    10. Little Roderick J., 2013. "Discussion," Journal of Official Statistics, Sciendo, vol. 29(3), pages 363-366, June.
    11. Toni P. Miles & Changle Li & M. Mahmud Khan & Rana Bayakly & Deborah Carr, 2023. "Estimating Prevalence of Bereavement, Its Contribution to Risk for Binge Drinking, and Other High-Risk Health States in a State Population Survey, 2019 Georgia Behavioral Risk Factor Surveillance Surv," IJERPH, MDPI, vol. 20(10), pages 1-15, May.
    12. Kunihama, T. & Herring, A.H. & Halpern, C.T. & Dunson, D.B., 2016. "Nonparametric Bayes modeling with sample survey weights," Statistics & Probability Letters, Elsevier, vol. 113(C), pages 41-48.
    13. Mahsa Samsami & Ralf Wagner, 2021. "Investment Decisions with Endogeneity: A Dirichlet Tree Analysis," JRFM, MDPI, vol. 14(7), pages 1-19, July.
    14. Erica Espinosa & Alvaro Figueira, 2023. "On the Quality of Synthetic Generated Tabular Data," Mathematics, MDPI, vol. 11(15), pages 1-18, July.
    15. Guanhua Fang & Jingchen Liu & Zhiliang Ying, 2019. "On the Identifiability of Diagnostic Classification Models," Psychometrika, Springer;The Psychometric Society, vol. 84(1), pages 19-40, March.
    16. Claire McKay Bowen & Fang Liu & Bingyue Su, 2021. "Differentially private data release via statistical election to partition sequentially," METRON, Springer;Sapienza Università di Roma, vol. 79(1), pages 1-31, April.
    17. Ron S. Jarmin & John M. Abowd & Robert Ashmead & Ryan Cumings-Menon & Nathan Goldschlag & Michael B. Hawes & Sallie Ann Keller & Daniel Kifer & Philip Leclerc & Jerome P. Reiter & Rolando A. Rodrígue, 2023. "An in-depth examination of requirements for disclosure risk assessment," Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, vol. 120(43), pages 2220558120-, October.
    18. Durante, Daniele, 2017. "A note on the multiplicative gamma process," Statistics & Probability Letters, Elsevier, vol. 122(C), pages 198-204.
    19. Wu, Fang & Swait, Joffre & Chen, Yuxin, 2019. "Feature-based attributes and the roles of consumers' perception bias and inference in choice," International Journal of Research in Marketing, Elsevier, vol. 36(2), pages 325-340.
    20. Yajuan Si & Jerome P. Reiter, 2013. "Nonparametric Bayesian Multiple Imputation for Incomplete Categorical Variables in Large-Scale Assessment Surveys," Journal of Educational and Behavioral Statistics, , vol. 38(5), pages 499-521, October.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:jorssa:v:184:y:2021:i:1:p:255-281. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://edirc.repec.org/data/rssssea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.