IDEAS home Printed from https://ideas.repec.org/a/gam/jagris/v13y2023i8p1484-d1203129.html
   My bibliography  Save this article

Evaluation of Agricultural BMPs’ Impact on Water Quality and Crop Production Using SWAT+ Model

Author

Listed:
  • Shailendra Singh

    (Department of Agricultural and Biological Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA)

  • Soonho Hwang

    (Department of Agricultural and Biological Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA)

  • Jeffrey G. Arnold

    (Agricultural Research Service, United States Department of Agriculture, Temple, TX 76502, USA)

  • Rabin Bhattarai

    (Department of Agricultural and Biological Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA)

Abstract

Subsurface (or tile) drainage improves land productivity by enhancing soil aeration and preventing water-logged conditions. However, the continuous expansion of drained agricultural lands and reliance on synthetic fertilizer in the Midwestern United States have increasingly facilitated nitrate transport from agricultural fields to surface water bodies. Hence, there is a need to implement various agricultural best management practices (BMPs) in order to reduce the adverse water quality impacts resulting from excess nitrate, such as eutrophication and the formation of hypoxic zones. In this study, we used a SWAT+ model to assess the overall impacts on the riverine nitrate load and crop yield in the corn–soybean cropping system based on a combination of different management practices. The corn and soybean yields simulated with the model were found to be in good agreement with the observed yields for both the calibration and validation periods. The long-term simulation over a period of 30 years showed a reduction in the nitrate load of up to 32% without impacting the crop yield. The model results suggest that by reducing the current N application rate by 20% and using a 40:60 split between spring pre-plant and side-dressing N applications combined with cereal rye as a cover crop in corn–soybean rotation, one can potentially reduce nitrate losses without impacting crop yields. This study will help researchers, stakeholders, and farmers to explore and adopt alternative management practices beneficial for offsetting the environmental impacts of agricultural productions on the watershed scale.

Suggested Citation

  • Shailendra Singh & Soonho Hwang & Jeffrey G. Arnold & Rabin Bhattarai, 2023. "Evaluation of Agricultural BMPs’ Impact on Water Quality and Crop Production Using SWAT+ Model," Agriculture, MDPI, vol. 13(8), pages 1-16, July.
  • Handle: RePEc:gam:jagris:v:13:y:2023:i:8:p:1484-:d:1203129
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2077-0472/13/8/1484/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2077-0472/13/8/1484/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Liu, H.L. & Yang, J.Y. & Tan, C.S. & Drury, C.F. & Reynolds, W.D. & Zhang, T.Q. & Bai, Y.L. & Jin, J. & He, P. & Hoogenboom, G., 2011. "Simulating water content, crop yield and nitrate-N loss under free and controlled tile drainage with subsurface irrigation using the DSSAT model," Agricultural Water Management, Elsevier, vol. 98(6), pages 1105-1111, April.
    2. Gassman, Philip W. & Reyes, Manuel R. & Green, Colleen H. & Arnold, Jeffrey G., 2007. "The Soil and Water Assessment Tool: Historical Development, Applications, and Future Research Directions," ISU General Staff Papers 200701010800001027, Iowa State University, Department of Economics.
    3. Singh, Shailendra & Bhattarai, Rabin & Negm, Lamyaa M. & Youssef, Mohamed A. & Pittelkow, Cameron M., 2020. "Evaluation of nitrogen loss reduction strategies using DRAINMOD-DSSAT in east-central Illinois," Agricultural Water Management, Elsevier, vol. 240(C).
    4. Moriasi, Daniel N. & Gowda, Prasanna H. & Arnold, Jeffrey G. & Mulla, David J. & Ale, Srinivasulu & Steiner, Jean L., 2013. "Modeling the impact of nitrogen fertilizer application and tile drain configuration on nitrate leaching using SWAT," Agricultural Water Management, Elsevier, vol. 130(C), pages 36-43.
    5. Vivek Venishetty & Prem B. Parajuli, 2022. "Assessment of BMPs by Estimating Hydrologic and Water Quality Outputs Using SWAT in Yazoo River Watershed," Agriculture, MDPI, vol. 12(4), pages 1-14, March.
    6. Gowda, Prasanna H. & Mulla, David J. & Jaynes, Dan B., 2008. "Simulated long-term nitrogen losses for a midwestern agricultural watershed in the United States," Agricultural Water Management, Elsevier, vol. 95(5), pages 616-624, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ping Li & Nina Omani & Indrajeet Chaubey & Xiaomei Wei, 2017. "Evaluation of Drought Implications on Ecosystem Services: Freshwater Provisioning and Food Provisioning in the Upper Mississippi River Basin," IJERPH, MDPI, vol. 14(5), pages 1-23, May.
    2. Ojeda, Jonathan J. & Volenec, Jeffrey J. & Brouder, Sylvie M. & Caviglia, Octavio P. & Agnusdei, Mónica G., 2018. "Modelling stover and grain yields, and subsurface artificial drainage from long-term corn rotations using APSIM," Agricultural Water Management, Elsevier, vol. 195(C), pages 154-171.
    3. Gupta, Rishabh & Bhattarai, Rabin & Coppess, Jonathan W. & Jeong, Hanseok & Ruffatti, Michael & Armstrong, Shalamar D., 2022. "Modeling the impact of winter cover crop on tile drainage and nitrate loss using DSSAT model," Agricultural Water Management, Elsevier, vol. 272(C).
    4. Shreeya Bhattarai & Prem B. Parajuli, 2023. "Best Management Practices Affect Water Quality in Coastal Watersheds," Sustainability, MDPI, vol. 15(5), pages 1-17, February.
    5. Egbendewe-Mondzozo, Aklesso & Swinton, Scott M. & Bals, Bryan D. & Dale, Bruce E., 2011. "Can Dispersed Biomass Processing Protect the Environment and Cover the Bottom Line for Biofuel?," Staff Paper Series 119348, Michigan State University, Department of Agricultural, Food, and Resource Economics.
    6. Andersson, Jafet C.M. & Zehnder, Alexander J.B. & Rockström, Johan & Yang, Hong, 2011. "Potential impacts of water harvesting and ecological sanitation on crop yield, evaporation and river flow regimes in the Thukela River basin, South Africa," Agricultural Water Management, Elsevier, vol. 98(7), pages 1113-1124, May.
    7. Hongxing Liu & Wendong Zhang & Elena Irwin & Jeffrey Kast & Noel Aloysius & Jay Martin & Margaret Kalcic, 2020. "Best Management Practices and Nutrient Reduction: An Integrated Economic-Hydrologic Model of the Western Lake Erie Basin," Land Economics, University of Wisconsin Press, vol. 96(4), pages 510-530.
    8. Alan F. Hamlet & Nima Ehsani & Jennifer L. Tank & Zachariah Silver & Kyuhyun Byun & Ursula H. Mahl & Shannon L. Speir & Matt T. Trentman & Todd V. Royer, 2024. "Effects of climate and winter cover crops on nutrient loss in agricultural watersheds in the midwestern U.S," Climatic Change, Springer, vol. 177(1), pages 1-21, January.
    9. Yates, Andrew J. & Doyle, Martin W. & Rigby, J.R. & Schnier, Kurt E., 2013. "Market power, private information, and the optimal scale of pollution permit markets with application to North Carolina's Neuse River," Resource and Energy Economics, Elsevier, vol. 35(3), pages 256-276.
    10. Eini, Mohammad Reza & Salmani, Haniyeh & Piniewski, Mikołaj, 2023. "Comparison of process-based and statistical approaches for simulation and projections of rainfed crop yields," Agricultural Water Management, Elsevier, vol. 277(C).
    11. Jeong, Hanseok & Kim, Hakkwan & Jang, Taeil & Park, Seungwoo, 2016. "Assessing the effects of indirect wastewater reuse on paddy irrigation in the Osan River watershed in Korea using the SWAT model," Agricultural Water Management, Elsevier, vol. 163(C), pages 393-402.
    12. Lingcheng Li & Liping Zhang & Jun Xia & Christopher Gippel & Renchao Wang & Sidong Zeng, 2015. "Implications of Modelled Climate and Land Cover Changes on Runoff in the Middle Route of the South to North Water Transfer Project in China," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(8), pages 2563-2579, June.
    13. Roy Brouwer & Rute Pinto & Jorge Garcia‐Hernandez & Xingtong Li & Merrin Macrae & Predrag Rajsic & Wanhong Yang & Yongbo Liu & Mark Anderson & Louise Heyming, 2023. "Spatial optimization of nutrient reduction measures on agricultural land to improve water quality: A coupled modeling approach," Canadian Journal of Agricultural Economics/Revue canadienne d'agroeconomie, Canadian Agricultural Economics Society/Societe canadienne d'agroeconomie, vol. 71(3-4), pages 329-353, September.
    14. Ramesh P. Rudra & Balew A. Mekonnen & Rituraj Shukla & Narayan Kumar Shrestha & Pradeep K. Goel & Prasad Daggupati & Asim Biswas, 2020. "Currents Status, Challenges, and Future Directions in Identifying Critical Source Areas for Non-Point Source Pollution in Canadian Conditions," Agriculture, MDPI, vol. 10(10), pages 1-25, October.
    15. Javier Senent-Aparicio & Sitian Liu & Julio Pérez-Sánchez & Adrián López-Ballesteros & Patricia Jimeno-Sáez, 2018. "Assessing Impacts of Climate Variability and Reforestation Activities on Water Resources in the Headwaters of the Segura River Basin (SE Spain)," Sustainability, MDPI, vol. 10(9), pages 1-13, September.
    16. Elias Bekele & H. Knapp, 2010. "Watershed Modeling to Assessing Impacts of Potential Climate Change on Water Supply Availability," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 24(13), pages 3299-3320, October.
    17. Gao, Jie & Xie, Pengxuan & Zhuo, La & Shang, Kehui & Ji, Xiangxiang & Wu, Pute, 2021. "Water footprints of irrigated crop production and meteorological driving factors at multiple temporal scales," Agricultural Water Management, Elsevier, vol. 255(C).
    18. N. Maier & J. Dietrich, 2016. "Using SWAT for Strategic Planning of Basin Scale Irrigation Control Policies: a Case Study from a Humid Region in Northern Germany," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(9), pages 3285-3298, July.
    19. Ribaudo, Marc & Savage, Jeffrey, 2014. "Controlling non-additional credits from nutrient management in water quality trading programs through eligibility baseline stringency," Ecological Economics, Elsevier, vol. 105(C), pages 233-239.
    20. Lin Ye & Nancy Grimm, 2013. "Modelling potential impacts of climate change on water and nitrate export from a mid-sized, semiarid watershed in the US Southwest," Climatic Change, Springer, vol. 120(1), pages 419-431, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jagris:v:13:y:2023:i:8:p:1484-:d:1203129. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.