IDEAS home Printed from https://ideas.repec.org/a/gam/jagris/v13y2023i4p913-d1129474.html
   My bibliography  Save this article

From Waste to Resources: Sewage Sludges from the Citrus Processing Industry to Improve Soil Fertility and Performance of Lettuce ( Lactuca sativa L.)

Author

Listed:
  • Caterina Lucia

    (Department of Agriculture, Food and Forest Sciences, University of Palermo, Viale delle Scienze, Building 4, 90128 Palermo, Italy)

  • Daniela Pampinella

    (Department of Agriculture, Food and Forest Sciences, University of Palermo, Viale delle Scienze, Building 4, 90128 Palermo, Italy)

  • Eristanna Palazzolo

    (Department of Agriculture, Food and Forest Sciences, University of Palermo, Viale delle Scienze, Building 4, 90128 Palermo, Italy)

  • Luigi Badalucco

    (Department of Agriculture, Food and Forest Sciences, University of Palermo, Viale delle Scienze, Building 4, 90128 Palermo, Italy)

  • Vito Armando Laudicina

    (Department of Agriculture, Food and Forest Sciences, University of Palermo, Viale delle Scienze, Building 4, 90128 Palermo, Italy)

Abstract

The citrus industry produces a large number of sludges as a consequence of citrus wastewater treatment. The correct disposal of citrus sewage sludges (CSSs) has been attempted using anaerobic digestion, aerobic digestion, and lime stabilization. However, since CSSs hold nitrogen, phosphorus, and other macronutrients required by crops, in line with the circular economy principles, they could be utilized for agricultural purposes, such as organic fertilizer. The aim of this study was to assess the effect of CSSs supplied at different doses on soil fertility and lettuce performance. To this end, a pot experiment was established. The soil was amended with CSSs at three different concentrations (2.5, 5, 10 t ha −1 ). After 46 days of lettuce growth, the experiment was stopped, and soils and plants were analyzed. Soil amended with CSSs showed an increase in total organic C ranging from 7% to 11%. Additionally, available P increased but only at the highest CSS dose. The addition of CSSs affected the biochemical properties of soil, but a univocal trend related to the number of CSSs applied was not found. Microbial biomass C increased only with the highest dose of CSS applied, while the metabolic quotient (qCO 2 ) decreased. Such a positive effect on soil fertility and soil microorganisms, in turn, lead to an increase in lettuce biomass. Moreover, results indicated that following CSS addition, lettuce crops adsorbed more N in leaves than in roots, whereas P, Ca, Mg, K, and Na showed an opposite pattern and increased more consistently in roots. In conclusion, amendment with CSSs enhances soil fertility by increasing, regardless of CSS dose, total organic C, and, at the highest dose, P availability and microbial biomass C. Such improvement in soil fertility, in turn, increases lettuce biomass production without affecting its quality, i.e., alteration of the (K + Na)/(Ca + Mg) ratio.

Suggested Citation

  • Caterina Lucia & Daniela Pampinella & Eristanna Palazzolo & Luigi Badalucco & Vito Armando Laudicina, 2023. "From Waste to Resources: Sewage Sludges from the Citrus Processing Industry to Improve Soil Fertility and Performance of Lettuce ( Lactuca sativa L.)," Agriculture, MDPI, vol. 13(4), pages 1-12, April.
  • Handle: RePEc:gam:jagris:v:13:y:2023:i:4:p:913-:d:1129474
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2077-0472/13/4/913/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2077-0472/13/4/913/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Sara Paliaga & Caterina Lucia & Daniela Pampinella & Sofia Maria Muscarella & Luigi Badalucco & Eristanna Palazzolo & Vito Armando Laudicina, 2023. "Shifting Long-Term Tillage to Geotextile Mulching for Weed Control Improves Soil Quality and Yield of Orange Orchards," Agriculture, MDPI, vol. 13(4), pages 1-11, March.
    2. A. Guerrini & G. Romano & L. Carosi & F. Mancuso, 2017. "Cost Savings in Wastewater Treatment Processes: the Role of Environmental and Operational Drivers," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(8), pages 2465-2478, June.
    3. Xuan Zhang & Xian-qing Wang & Dong-fang Wang, 2017. "Immobilization of Heavy Metals in Sewage Sludge during Land Application Process in China: A Review," Sustainability, MDPI, vol. 9(11), pages 1-19, November.
    4. Elena Goldan & Valentin Nedeff & Narcis Barsan & Mihaela Culea & Claudia Tomozei & Mirela Panainte-Lehadus & Emilian Mosnegutu, 2022. "Evaluation of the Use of Sewage Sludge Biochar as a Soil Amendment—A Review," Sustainability, MDPI, vol. 14(9), pages 1-22, April.
    5. Maria Raimondo & Francesco Caracciolo & Luigi Cembalo & Gaetano Chinnici & Biagio Pecorino & Mario D’Amico, 2018. "Making Virtue Out of Necessity: Managing the Citrus Waste Supply Chain for Bioeconomy Applications," Sustainability, MDPI, vol. 10(12), pages 1-20, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Vito Armando Laudicina & Paolo Ruisi & Luigi Badalucco, 2023. "Soil Quality and Crop Nutrition," Agriculture, MDPI, vol. 13(7), pages 1-4, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Amir Homayoun Sarfaraz & Amir Karbassi Yazdi & Thomas Hanne & Peter Fernandes Wanke & Raheleh Sadat Hosseini, 2023. "Assessing repair and maintenance efficiency for water suppliers: a novel hybrid USBM-FIS framework," Operations Management Research, Springer, vol. 16(3), pages 1321-1342, September.
    2. Valdas Rudelis & Tadas Dambrauskas & Agne Grineviciene & Kestutis Baltakys, 2019. "The Prospective Approach for the Reduction of Fluoride Ions Mobility in Industrial Waste by Creating Products of Commercial Value," Sustainability, MDPI, vol. 11(3), pages 1-18, January.
    3. Malwina Tytła, 2020. "Identification of the Chemical Forms of Heavy Metals in Municipal Sewage Sludge as a Critical Element of Ecological Risk Assessment in Terms of Its Agricultural or Natural Use," IJERPH, MDPI, vol. 17(13), pages 1-22, June.
    4. Juan Félix González & Carmen María Álvez-Medina & Sergio Nogales-Delgado, 2023. "Biogas Steam Reforming in Wastewater Treatment Plants: Opportunities and Challenges," Energies, MDPI, vol. 16(17), pages 1-35, September.
    5. Vladimír Frišták & Diana Bošanská & Vladimír Turčan & Martin Pipíška & Christoph Pfeifer & Gerhard Soja, 2022. "Relevance of Pyrolysis Products Derived from Sewage Sludge for Soil Applications," Agriculture, MDPI, vol. 13(1), pages 1-14, December.
    6. Jiapei Wei & Gefu Liang & James Alex & Tongchao Zhang & Chunbo Ma, 2020. "Research Progress of Energy Utilization of Agricultural Waste in China: Bibliometric Analysis by Citespace," Sustainability, MDPI, vol. 12(3), pages 1-22, January.
    7. Shuncun Zhang & Tao Wang & Hao Wang & Qiangqiang Kang & Qian Zhou & Bo Chen, 2022. "Spatial Pattern, Sources Identification, and Risk Assessment of Heavy Metals in a Typical Soda Soil from Bayannur, Northwestern China," IJERPH, MDPI, vol. 19(21), pages 1-16, October.
    8. Anna Turek & Kinga Wieczorek & Wojciech M. Wolf, 2019. "Digestion Procedure and Determination of Heavy Metals in Sewage Sludge—An Analytical Problem," Sustainability, MDPI, vol. 11(6), pages 1-10, March.
    9. Yong Sun & Hui Liu & Jiwei Liu & Mingyu Sun & Qun Li, 2023. "Analysis of Factors Influencing the Corporate Performance of Listed Companies in China’s Agriculture and Forestry Sector Based on a Panel Threshold Model," Sustainability, MDPI, vol. 15(2), pages 1-21, January.
    10. Rogério João Lunkes & Fabricia Silva da Rosa & Pamela Lattanzi, 2020. "The Effect of the Perceived Utility of a Management Control System with a Broad Scope on the Use of Food Waste Information and on Financial and Non-Financial Performances in Restaurants," Sustainability, MDPI, vol. 12(15), pages 1-14, August.
    11. Dong-Fang Wang & Shi-He Li & Xian-Qing Wang & Ling-Xu Li & Xuan Zhang, 2018. "Synergistic Passivation of Fly Ash and TMT on Heavy Metals in Sewage Sludge," Sustainability, MDPI, vol. 10(12), pages 1-17, December.
    12. Sanz-Hernández, Alexia & Jiménez-Caballero, Paula & Zarauz, Irene, 2022. "Gender and women in scientific literature on bioeconomy: A systematic review," Forest Policy and Economics, Elsevier, vol. 141(C).
    13. Monica Laura Zlati & Lucian Puiu Georgescu & Catalina Iticescu & Romeo Victor Ionescu & Valentin Marian Antohi, 2022. "New Approach to Modelling the Impact of Heavy Metals on the European Union’s Water Resources," IJERPH, MDPI, vol. 20(1), pages 1-24, December.
    14. Shihe Li & Baihui Fang & Dongfang Wang & Xianqing Wang & Xiaobing Man & Xuan Zhang, 2019. "Leaching Characteristics of Heavy Metals and Plant Nutrients in the Sewage Sludge Immobilized by Composite Phosphorus-Bearing Materials," IJERPH, MDPI, vol. 16(24), pages 1-18, December.
    15. Thomas Nyström & Katherine A. Whalen & Derek Diener & Marcel den Hollander & Robert H. W. Boyer, 2021. "Managing Circular Business Model Uncertainties with Future Adaptive Design," Sustainability, MDPI, vol. 13(18), pages 1-18, September.
    16. Oumaima Mabrouk & Helmi Hamdi & Sami Sayadi & Mohammad A. Al-Ghouti & Mohammed H. Abu-Dieyeh & Nabil Zouari, 2023. "Reuse of Sludge as Organic Soil Amendment: Insights into the Current Situation and Potential Challenges," Sustainability, MDPI, vol. 15(8), pages 1-25, April.
    17. Benedetta Esposito & Maria Rosaria Sessa & Daniela Sica & Ornella Malandrino, 2020. "Towards Circular Economy in the Agri-Food Sector. A Systematic Literature Review," Sustainability, MDPI, vol. 12(18), pages 1-21, September.
    18. Yao Kohou Donatien Guéablé & Youssef Bezrhoud & Henri Joël Aké Aké & Haitam Moulay & Amal An-nori & Aziz Soulaimani & Lhoussaine Moughli & Yedir Ouhdouch & Mohamed Hafidi & Mohamed El Gharous & Khalil, 2022. "New Approach for Mining Site Reclamation Using Alternative Substrate Based on Phosphate Industry By-Product and Sludge (Part 2): Metals Transfer to Plant and Soil Microbial Density," Sustainability, MDPI, vol. 14(18), pages 1-14, September.
    19. Madiyar Aidabulov & Daulet Zhakupov & Khabiba Zhunussova & Aknur Temireyeva & Dhawal Shah & Yerbol Sarbassov, 2023. "Thermal Characterization, Kinetic Analysis and Co-Combustion of Sewage Sludge Coupled with High Ash Ekibastuz Coal," Energies, MDPI, vol. 16(18), pages 1-13, September.
    20. Payel Sinha & Serhiy Marchuk & Peter Harris & Diogenes L. Antille & Bernadette K. McCabe, 2023. "Land Application of Biosolids-Derived Biochar in Australia: A Review," Sustainability, MDPI, vol. 15(14), pages 1-29, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jagris:v:13:y:2023:i:4:p:913-:d:1129474. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.