IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v19y2022i21p13880-d952943.html
   My bibliography  Save this article

Spatial Pattern, Sources Identification, and Risk Assessment of Heavy Metals in a Typical Soda Soil from Bayannur, Northwestern China

Author

Listed:
  • Shuncun Zhang

    (Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
    Gansu Salinization Field Observation and Research Station, Lanzhou 730000, China)

  • Tao Wang

    (Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
    Gansu Salinization Field Observation and Research Station, Lanzhou 730000, China)

  • Hao Wang

    (Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
    University of Chinese Academy of Sciences, Beijing 100049, China)

  • Qiangqiang Kang

    (Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
    University of Chinese Academy of Sciences, Beijing 100049, China)

  • Qian Zhou

    (Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
    University of Chinese Academy of Sciences, Beijing 100049, China)

  • Bo Chen

    (Guangxi Key Laboratory of Green Chemical Materials and Safety Technology, Beibu Gulf University, Qinzhou 515000, China)

Abstract

Soil is an important natural resource in the agricultural areas of northwest China. The heavy metal concentration and ecological risk assessments are crucial for food safety and human health. This work collected 35 surface soil samples and focused on a typical soda soil quality of the Hetao Plain in Bayannur, which is an important grain production base in northern China. The concentration and composition of heavy metal (arsenic (As), cobalt (Co), copper (Cu), lead (Pb), cadmium (Cd), chromium (Cr), mercury (Hg), nickel (Ni), zinc (Zn)), soluble salts, total organic carbon (TOC), and minerals of the surface soils were analyzed to assess the biotoxicity, ecological risk, sources, and influencing factors of heavy metals in these soda soil from this region. The enrichment factors ( EF ) showed that As, Co, Cu, and Pb were not contaminated in these soils, while Cd, Cr, Hg, Ni, and Zn were lightly contaminated. The index of geoaccumulation ( I geo ) for the soda soils indicated that Co and Pb were uncontaminated, and Cr, Cd, Ni, Zn, Hg, Cu, and As were lightly contaminated. The potential ecological risk index ( RI ) indicated there were no or low risks for As, Co, Cr, Cu, Ni, Pb, and Zn. Although the concentrations of Cd and Hg in the soil were low, the two heavy metals exhibited moderate–high ecological risk because they have high biological toxicity. Cd in the soils from Hetao Plain in Bayannur is mainly exchangeable and reducible fractions. The other heavy metals in these soda soils are mainly in residue fraction, implying that their mobility is low and not easily absorbed and used by plants. Heavy metal fractions, principal component analysis (PCA), and correlation analysis showed that As, Co, Cr, Cu, and Pb were mainly from natural sources, while Ni, Cd, and Zn were mainly from anthropogenic discharge-related irrigation, fertilizers, and pesticide application, and Hg was mainly from winter snowfall in the study area. Naturally sourced metal elements have obvious sediment properties, and their adsorption by clay minerals and coupling with organic matter along with sediment transport sorting. The salinity and pH of soda soils in the study area have a highly positive correlation, hence the influence of factors on the concentrations of soil heavy metals are consistent. For anthropogenically imported heavy metals, increasing salinity and pH promote the precipitation of metallic elements in water. Cd is present as an exchangeable and reducible fraction, while Ni and Zn are mainly sequestered by organic matter and clay minerals.

Suggested Citation

  • Shuncun Zhang & Tao Wang & Hao Wang & Qiangqiang Kang & Qian Zhou & Bo Chen, 2022. "Spatial Pattern, Sources Identification, and Risk Assessment of Heavy Metals in a Typical Soda Soil from Bayannur, Northwestern China," IJERPH, MDPI, vol. 19(21), pages 1-16, October.
  • Handle: RePEc:gam:jijerp:v:19:y:2022:i:21:p:13880-:d:952943
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/19/21/13880/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/19/21/13880/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Amin I. Ismayilov & Amrakh I. Mamedov & Haruyuki Fujimaki & Atsushi Tsunekawa & Guy J. Levy, 2021. "Soil Salinity Type Effects on the Relationship between the Electrical Conductivity and Salt Content for 1:5 Soil-to-Water Extract," Sustainability, MDPI, vol. 13(6), pages 1-11, March.
    2. Shuncun Zhang & Bo Chen & Junru Du & Tao Wang & Haixin Shi & Feng Wang, 2022. "Distribution, Assessment, and Source of Heavy Metals in Sediments of the Qinjiang River, China," IJERPH, MDPI, vol. 19(15), pages 1-17, July.
    3. Xuan Zhang & Xian-qing Wang & Dong-fang Wang, 2017. "Immobilization of Heavy Metals in Sewage Sludge during Land Application Process in China: A Review," Sustainability, MDPI, vol. 9(11), pages 1-19, November.
    4. Hui Hu & Qian Jin & Philip Kavan, 2014. "A Study of Heavy Metal Pollution in China: Current Status, Pollution-Control Policies and Countermeasures," Sustainability, MDPI, vol. 6(9), pages 1-19, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Valdas Rudelis & Tadas Dambrauskas & Agne Grineviciene & Kestutis Baltakys, 2019. "The Prospective Approach for the Reduction of Fluoride Ions Mobility in Industrial Waste by Creating Products of Commercial Value," Sustainability, MDPI, vol. 11(3), pages 1-18, January.
    2. Ramesh Chandra Das & Tonmoy Chatterjee & Enrico Ivaldi, 2022. "Nexus between Housing Price and Magnitude of Pollution: Evidence from the Panel of Some High- and-Low Polluting Cities of the World," Sustainability, MDPI, vol. 14(15), pages 1-18, July.
    3. Malwina Tytła, 2020. "Identification of the Chemical Forms of Heavy Metals in Municipal Sewage Sludge as a Critical Element of Ecological Risk Assessment in Terms of Its Agricultural or Natural Use," IJERPH, MDPI, vol. 17(13), pages 1-22, June.
    4. Sana Khalid & Muhammad Shahid & Natasha & Irshad Bibi & Tania Sarwar & Ali Haidar Shah & Nabeel Khan Niazi, 2018. "A Review of Environmental Contamination and Health Risk Assessment of Wastewater Use for Crop Irrigation with a Focus on Low and High-Income Countries," IJERPH, MDPI, vol. 15(5), pages 1-36, May.
    5. Vladimír Frišták & Diana Bošanská & Vladimír Turčan & Martin Pipíška & Christoph Pfeifer & Gerhard Soja, 2022. "Relevance of Pyrolysis Products Derived from Sewage Sludge for Soil Applications," Agriculture, MDPI, vol. 13(1), pages 1-14, December.
    6. Zhou Li & Hong Su & Li Wang & Danbiao Hu & Lijun Zhang & Jian Fang & Micong Jin & Samuel Selorm Fiati Kenston & Xin Song & Hongbo Shi & Jinshun Zhao & Guochuan Mao, 2018. "Epidemiological Study on Metal Pollution of Ningbo in China," IJERPH, MDPI, vol. 15(3), pages 1-14, February.
    7. Songtao Xu & Zhifang Zhou & Ke Liu, 2020. "Multi-Evolutionary Game Research on Heavy Metal Pollution Control in Soil: Based on a Third-Party Perspective," Sustainability, MDPI, vol. 12(13), pages 1-20, June.
    8. Zhensheng Wang & Ke Nie, 2017. "Measuring Spatial Distribution Characteristics of Heavy Metal Contaminations in a Network-Constrained Environment: A Case Study in River Network of Daye, China," Sustainability, MDPI, vol. 9(6), pages 1-11, June.
    9. Anna Turek & Kinga Wieczorek & Wojciech M. Wolf, 2019. "Digestion Procedure and Determination of Heavy Metals in Sewage Sludge—An Analytical Problem," Sustainability, MDPI, vol. 11(6), pages 1-10, March.
    10. Xiaoling Xiong & Jizhi Li & Zejian Lin, 2023. "Evolutionary Game and Simulation Analysis of Participating Subjects in Remediation of Heavy Metal Contaminated Cultivated Land under the Ladder Multiple Supervision Model," Sustainability, MDPI, vol. 15(6), pages 1-20, March.
    11. Yinzhong Ning & Xinmu Zhang & Binzhe Li & Yajing Wang & Jingheng Guo, 2019. "Distribution of Cd and Cu Fractions in Chinese Soils and Their Relationships with Soil pH: A Meta-Analysis," Sustainability, MDPI, vol. 11(2), pages 1-11, January.
    12. Dong-Fang Wang & Shi-He Li & Xian-Qing Wang & Ling-Xu Li & Xuan Zhang, 2018. "Synergistic Passivation of Fly Ash and TMT on Heavy Metals in Sewage Sludge," Sustainability, MDPI, vol. 10(12), pages 1-17, December.
    13. Weixin Yang & Lingguang Li, 2017. "Analysis of Total Factor Efficiency of Water Resource and Energy in China: A Study Based on DEA-SBM Model," Sustainability, MDPI, vol. 9(8), pages 1-21, July.
    14. Monica Laura Zlati & Lucian Puiu Georgescu & Catalina Iticescu & Romeo Victor Ionescu & Valentin Marian Antohi, 2022. "New Approach to Modelling the Impact of Heavy Metals on the European Union’s Water Resources," IJERPH, MDPI, vol. 20(1), pages 1-24, December.
    15. Shihe Li & Baihui Fang & Dongfang Wang & Xianqing Wang & Xiaobing Man & Xuan Zhang, 2019. "Leaching Characteristics of Heavy Metals and Plant Nutrients in the Sewage Sludge Immobilized by Composite Phosphorus-Bearing Materials," IJERPH, MDPI, vol. 16(24), pages 1-18, December.
    16. Fuat Kaya & Calogero Schillaci & Ali Keshavarzi & Levent Başayiğit, 2022. "Predictive Mapping of Electrical Conductivity and Assessment of Soil Salinity in a Western Türkiye Alluvial Plain," Land, MDPI, vol. 11(12), pages 1-21, November.
    17. Hui Hu & Xiang Li & Anh Dung Nguyen & Philip Kavan, 2015. "A Critical Evaluation of Waste Incineration Plants in Wuhan (China) Based on Site Selection, Environmental Influence, Public Health and Public Participation," IJERPH, MDPI, vol. 12(7), pages 1-22, July.
    18. Xianning Wang & Zhengang Ma & Jiusheng Chen & Jingrong Dong, 2023. "Can Regional Eco-Efficiency Forecast the Changes in Local Public Health: Evidence Based on Statistical Learning in China," IJERPH, MDPI, vol. 20(2), pages 1-19, January.
    19. Oumaima Mabrouk & Helmi Hamdi & Sami Sayadi & Mohammad A. Al-Ghouti & Mohammed H. Abu-Dieyeh & Nabil Zouari, 2023. "Reuse of Sludge as Organic Soil Amendment: Insights into the Current Situation and Potential Challenges," Sustainability, MDPI, vol. 15(8), pages 1-25, April.
    20. Vyacheslav Polyakov & Alexander Kozlov & Azamat Suleymanov & Evgeny Abakumov, 2021. "Soil pollution status of urban soils in St. Petersburg city, North-west of Russia," Soil and Water Research, Czech Academy of Agricultural Sciences, vol. 16(3), pages 164-173.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:19:y:2022:i:21:p:13880-:d:952943. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.