IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v16y2019i13p2430-d246698.html
   My bibliography  Save this article

Assessment of Heavy Metal Pollution and Potential Ecological Risk in Sewage Sludge from Municipal Wastewater Treatment Plant Located in the Most Industrialized Region in Poland—Case Study

Author

Listed:
  • Malwina Tytła

    (Institute of Environmental Engineering, Polish Academy of Sciences, 34 M. Skłodowskiej-Curie St., 41-819 Zabrze, Poland)

Abstract

This study aimed to assess the pollution and potential ecological risk of seven heavy metals (Cd, Cr, Cu, Hg, Ni, Pb, and Zn) in the sewage sludge collected from a wastewater treatment plant (WWTP), located in the most industrialized region of Poland (Silesian Voivodeship). The concentrations of heavy metals were determined using inductively coupled plasma optical spectrometry (ICP-OES) and cold vapor atomic absorption spectrometry (CVAAS). The chemical forms (chemical speciation) of heavy metals were determined using the three-step chemical sequential extraction procedure, developed by the Community Bureau of Reference (BCR). To assess the pollution level and potential ecological risk, the following indices were used: Geoaccumulation Index (I geo ), Potential Ecological Risk Factor (ER), Individual Contamination Factor (ICF), modified Risk Assessment Code (RAC m ), and Ecological Risk Factor (ERF)—the author’s index. Sludge samples were collected at successive stages of processing. The results revealed that the activated sludge process and sludge thickening have a significant impact on heavy metal distribution, while anaerobic digestion and dehydration decrease their mobility. The most dominant metals in the sludge samples were Zn and Cu. However, the content of heavy metals in sewage sludge did not exceed the permissible standards for agricultural purposes. The concentrations of heavy metals bound to the immobile fractions exhibited higher concentrations, compared to those bound to mobile fractions (except Zn). The values of the total indices indicated that sludge samples were moderately to highly contaminated with Zn, Hg, Cd, Cu, and Pb, of which only Hg, Cd, and Cu posed a potential ecological risk, while according to the speciation indices, sludge samples were moderately to very highly polluted with Zn, Cu, Cd, Cr, and Ni, of which Zn, Ni, and Cd were environmentally hazardous. The obtained results proved that assessment of the pollution level and potential ecological risk of heavy metals in sewage sludge requires knowledge on both their total concentrations and their chemical forms. Such an approach will help prevent secondary pollution of soils with heavy metals, which may influence the reduction of health risks associated with the consumption of plants characterized by a high metal content.

Suggested Citation

  • Malwina Tytła, 2019. "Assessment of Heavy Metal Pollution and Potential Ecological Risk in Sewage Sludge from Municipal Wastewater Treatment Plant Located in the Most Industrialized Region in Poland—Case Study," IJERPH, MDPI, vol. 16(13), pages 1-16, July.
  • Handle: RePEc:gam:jijerp:v:16:y:2019:i:13:p:2430-:d:246698
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/16/13/2430/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/16/13/2430/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Claudia Bruna Rizzardini & Daniele Goi, 2014. "Sustainability of Domestic Sewage Sludge Disposal," Sustainability, MDPI, vol. 6(5), pages 1-11, April.
    2. Morteza Feizi & Mohsen Jalali & Gianacrlo Renella, 2019. "Assessment of nutrient and heavy metal content and speciation in sewage sludge from different locations in Iran," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 95(3), pages 657-675, February.
    3. Anna Turek & Kinga Wieczorek & Wojciech M. Wolf, 2019. "Digestion Procedure and Determination of Heavy Metals in Sewage Sludge—An Analytical Problem," Sustainability, MDPI, vol. 11(6), pages 1-10, March.
    4. Xuan Zhang & Xian-qing Wang & Dong-fang Wang, 2017. "Immobilization of Heavy Metals in Sewage Sludge during Land Application Process in China: A Review," Sustainability, MDPI, vol. 9(11), pages 1-19, November.
    5. Baoling Duan & Wuping Zhang & Haixia Zheng & Chunyan Wu & Qiang Zhang & Yushan Bu, 2017. "Comparison of Health Risk Assessments of Heavy Metals and As in Sewage Sludge from Wastewater Treatment Plants (WWTPs) for Adults and Children in the Urban District of Taiyuan, China," IJERPH, MDPI, vol. 14(10), pages 1-14, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Malwina Tytła, 2020. "Identification of the Chemical Forms of Heavy Metals in Municipal Sewage Sludge as a Critical Element of Ecological Risk Assessment in Terms of Its Agricultural or Natural Use," IJERPH, MDPI, vol. 17(13), pages 1-22, June.
    2. Shihe Li & Baihui Fang & Dongfang Wang & Xianqing Wang & Xiaobing Man & Xuan Zhang, 2019. "Leaching Characteristics of Heavy Metals and Plant Nutrients in the Sewage Sludge Immobilized by Composite Phosphorus-Bearing Materials," IJERPH, MDPI, vol. 16(24), pages 1-18, December.
    3. Valdas Rudelis & Tadas Dambrauskas & Agne Grineviciene & Kestutis Baltakys, 2019. "The Prospective Approach for the Reduction of Fluoride Ions Mobility in Industrial Waste by Creating Products of Commercial Value," Sustainability, MDPI, vol. 11(3), pages 1-18, January.
    4. Abdel daiem, Mahmoud M. & Hatata, Ahmed & Galal, Osama H. & Said, Noha & Ahmed, Dalia, 2021. "Prediction of biogas production from anaerobic co-digestion of waste activated sludge and wheat straw using two-dimensional mathematical models and an artificial neural network," Renewable Energy, Elsevier, vol. 178(C), pages 226-240.
    5. Vladimír Frišták & Diana Bošanská & Vladimír Turčan & Martin Pipíška & Christoph Pfeifer & Gerhard Soja, 2022. "Relevance of Pyrolysis Products Derived from Sewage Sludge for Soil Applications," Agriculture, MDPI, vol. 13(1), pages 1-14, December.
    6. Dorota Olejnik, 2024. "Evaluation of the Heavy Metals Content in Sewage Sludge from Selected Rural and Urban Wastewater Treatment Plants in Poland in Terms of Its Suitability for Agricultural Use," Sustainability, MDPI, vol. 16(12), pages 1-14, June.
    7. Liang Xiao & Yong Zhou & He Huang & Yu-Jie Liu & Ke Li & Meng-Yao Li & Yang Tian & Fei Wu, 2020. "Application of Geostatistical Analysis and Random Forest for Source Analysis and Human Health Risk Assessment of Potentially Toxic Elements (PTEs) in Arable Land Soil," IJERPH, MDPI, vol. 17(24), pages 1-19, December.
    8. Shuncun Zhang & Tao Wang & Hao Wang & Qiangqiang Kang & Qian Zhou & Bo Chen, 2022. "Spatial Pattern, Sources Identification, and Risk Assessment of Heavy Metals in a Typical Soda Soil from Bayannur, Northwestern China," IJERPH, MDPI, vol. 19(21), pages 1-16, October.
    9. Anna Turek & Kinga Wieczorek & Wojciech M. Wolf, 2019. "Digestion Procedure and Determination of Heavy Metals in Sewage Sludge—An Analytical Problem," Sustainability, MDPI, vol. 11(6), pages 1-10, March.
    10. Dong-Fang Wang & Shi-He Li & Xian-Qing Wang & Ling-Xu Li & Xuan Zhang, 2018. "Synergistic Passivation of Fly Ash and TMT on Heavy Metals in Sewage Sludge," Sustainability, MDPI, vol. 10(12), pages 1-17, December.
    11. Diana Mariana Cocârţă & Mihaela Alexandra Stoian & Aykan Karademir, 2017. "Crude Oil Contaminated Sites: Evaluation by Using Risk Assessment Approach," Sustainability, MDPI, vol. 9(8), pages 1-16, August.
    12. Lidia Mielcarz-Skalska & Beata Smolińska & Katarzyna Włodarczyk, 2021. "Nanoparticles as Potential Improvement for Conventional Fertilisation in the Cultivation of Raphanus sativus var. sativus," Agriculture, MDPI, vol. 11(11), pages 1-16, October.
    13. Monica Laura Zlati & Lucian Puiu Georgescu & Catalina Iticescu & Romeo Victor Ionescu & Valentin Marian Antohi, 2022. "New Approach to Modelling the Impact of Heavy Metals on the European Union’s Water Resources," IJERPH, MDPI, vol. 20(1), pages 1-24, December.
    14. Oumaima Mabrouk & Helmi Hamdi & Sami Sayadi & Mohammad A. Al-Ghouti & Mohammed H. Abu-Dieyeh & Nabil Zouari, 2023. "Reuse of Sludge as Organic Soil Amendment: Insights into the Current Situation and Potential Challenges," Sustainability, MDPI, vol. 15(8), pages 1-25, April.
    15. Esmeralda Chiorescu & Feodor Filipov, 2021. "Examining the Influence of Sludge from Municipal Wastewater Treatment Plants Processed by Euphore Installations on the Quantity and Quality of Rapeseed and Soybean Production," Agriculture, MDPI, vol. 11(4), pages 1-17, March.
    16. Xuan Zhang & Xian-qing Wang & Dong-fang Wang, 2017. "Immobilization of Heavy Metals in Sewage Sludge during Land Application Process in China: A Review," Sustainability, MDPI, vol. 9(11), pages 1-19, November.
    17. Yao Kohou Donatien Guéablé & Youssef Bezrhoud & Henri Joël Aké Aké & Haitam Moulay & Amal An-nori & Aziz Soulaimani & Lhoussaine Moughli & Yedir Ouhdouch & Mohamed Hafidi & Mohamed El Gharous & Khalil, 2022. "New Approach for Mining Site Reclamation Using Alternative Substrate Based on Phosphate Industry By-Product and Sludge (Part 2): Metals Transfer to Plant and Soil Microbial Density," Sustainability, MDPI, vol. 14(18), pages 1-14, September.
    18. Madiyar Aidabulov & Daulet Zhakupov & Khabiba Zhunussova & Aknur Temireyeva & Dhawal Shah & Yerbol Sarbassov, 2023. "Thermal Characterization, Kinetic Analysis and Co-Combustion of Sewage Sludge Coupled with High Ash Ekibastuz Coal," Energies, MDPI, vol. 16(18), pages 1-13, September.
    19. Lirui Zhang & Bo Wang & Songlin Zhang, 2024. "Risk Assessment and Attribution Analysis of Potentially Toxic Elements in Soil of Dongdagou, Baiyin, Gansu Province, China," Sustainability, MDPI, vol. 16(4), pages 1-19, February.
    20. Qiqi Chen & Junbiao Zhang & Lu Zhang, 2015. "Risk Assessment, Partition and Economic Loss Estimation of Rice Production in China," Sustainability, MDPI, vol. 7(1), pages 1-21, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:16:y:2019:i:13:p:2430-:d:246698. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.