IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i14p10909-d1192025.html
   My bibliography  Save this article

Land Application of Biosolids-Derived Biochar in Australia: A Review

Author

Listed:
  • Payel Sinha

    (Centre for Agricultural Engineering, University of Southern Queensland, Toowoomba, QLD 4350, Australia)

  • Serhiy Marchuk

    (Centre for Agricultural Engineering, University of Southern Queensland, Toowoomba, QLD 4350, Australia)

  • Peter Harris

    (Centre for Agricultural Engineering, University of Southern Queensland, Toowoomba, QLD 4350, Australia)

  • Diogenes L. Antille

    (Centre for Agricultural Engineering, University of Southern Queensland, Toowoomba, QLD 4350, Australia
    CSIRO Agriculture and Food, Canberra, ACT 2601, Australia)

  • Bernadette K. McCabe

    (Centre for Agricultural Engineering, University of Southern Queensland, Toowoomba, QLD 4350, Australia)

Abstract

Thermal treatment in Australia is gaining interest due to legislative changes, waste reduction goals, and the need to address contaminants’ risks in biosolids used for agriculture. The resulting biochar product has the potential to be beneficially recycled as a soil amendment. On-farm management practices were reviewed to identify barriers that need to be overcome to increase recycling and examine the role of pyrolysis and gasification in effectively improving the quality and safety of biochar intended for land application. Key findings revealed the following: (1) thermal treatment can effectively eliminate persistent organic pollutants, microplastics, and pathogens, and (2) more than 90% of the total heavy metals content in biosolids may become immobilized when these are converted to biochar, thus reducing their bioavailability following land application. While the reported research on the short-term effects of biosolids-derived biochar suggests promising agronomic results, there is a dearth of information on long-term effects. Other knowledge gaps include the optimization of land application rates, understanding of the rate of breakdown, and the fate of contaminants in soil and water, including heavy metal mobility and redistribution in the environment by processes such as erosion and runoff following land application. An improved understanding of nutrients and contaminants dynamics in soils receiving biosolids-derived biochar is a pre-requisite for their safe use in Australian agriculture, and therefore, it is highlighted as a priority area for future research.

Suggested Citation

  • Payel Sinha & Serhiy Marchuk & Peter Harris & Diogenes L. Antille & Bernadette K. McCabe, 2023. "Land Application of Biosolids-Derived Biochar in Australia: A Review," Sustainability, MDPI, vol. 15(14), pages 1-29, July.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:14:p:10909-:d:1192025
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/14/10909/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/14/10909/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Jorge Paz-Ferreiro & Aurora Nieto & Ana Méndez & Matthew Peter James Askeland & Gabriel Gascó, 2018. "Biochar from Biosolids Pyrolysis: A Review," IJERPH, MDPI, vol. 15(5), pages 1-16, May.
    2. Elena Goldan & Valentin Nedeff & Narcis Barsan & Mihaela Culea & Claudia Tomozei & Mirela Panainte-Lehadus & Emilian Mosnegutu, 2022. "Evaluation of the Use of Sewage Sludge Biochar as a Soil Amendment—A Review," Sustainability, MDPI, vol. 14(9), pages 1-22, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Enzo Antonio Lecciolle Paganini & Rafael Barroca Silva & Ludmila Ribeiro Roder & Iraê Amaral Guerrini & Gian Franco Capra & Eleonora Grilli & Antonio Ganga, 2024. "A Systematic Review and Meta-Analysis of the Sustainable Impact of Sewage Sludge Application on Soil Organic Matter and Nutrient Content," Sustainability, MDPI, vol. 16(22), pages 1-16, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Maria P. C. Volpi & Jean C. G. Silva & Andreas Hornung & Miloud Ouadi, 2024. "Review of the Current State of Pyrolysis and Biochar Utilization in Europe: A Scientific Perspective," Clean Technol., MDPI, vol. 6(1), pages 1-24, February.
    2. Juan Félix González & Carmen María Álvez-Medina & Sergio Nogales-Delgado, 2023. "Biogas Steam Reforming in Wastewater Treatment Plants: Opportunities and Challenges," Energies, MDPI, vol. 16(17), pages 1-35, September.
    3. Róger Moya & Carolina Tenorio & Jaime Quesada-Kimzey & Federico Másis-Meléndez, 2024. "Pyrogenic Carbonaceous Materials Production of Four Tropical Wood Produced by Slow Pyrolysis at Different Temperatures: Charcoal and Biochar Properties," Energies, MDPI, vol. 17(8), pages 1-21, April.
    4. Yumeng Yang & Barry Meehan & Kalpit Shah & Aravind Surapaneni & Jeff Hughes & Leon Fouché & Jorge Paz-Ferreiro, 2018. "Physicochemical Properties of Biochars Produced from Biosolids in Victoria, Australia," IJERPH, MDPI, vol. 15(7), pages 1-13, July.
    5. Samar Elkhalifa & Hamish R. Mackey & Tareq Al-Ansari & Gordon McKay, 2022. "Pyrolysis of Biosolids to Produce Biochars: A Review," Sustainability, MDPI, vol. 14(15), pages 1-19, August.
    6. Maria A. Lilli & Nikolaos V. Paranychianakis & Konstantinos Lionoudakis & Anna Kritikaki & Styliani Voutsadaki & Maria L. Saru & Konstantinos Komnitsas & Nikolaos P. Nikolaidis, 2023. "The Impact of Sewage-Sludge- and Olive-Mill-Waste-Derived Biochar Amendments to Tomato Cultivation," Sustainability, MDPI, vol. 15(5), pages 1-15, February.
    7. Maria A. Lilli & Nikolaos V. Paranychianakis & Konstantinos Lionoudakis & Maria L. Saru & Styliani Voutsadaki & Anna Kritikaki & Konstantinos Komnitsas & Nikolaos P. Nikolaidis, 2023. "Characterization and Risk Assessment of Different-Origin Biochars Applied in Agricultural Experiments," Sustainability, MDPI, vol. 15(11), pages 1-16, June.
    8. Polina Kuryntseva & Kamalya Karamova & Polina Galitskaya & Svetlana Selivanovskaya & Gennady Evtugyn, 2023. "Biochar Functions in Soil Depending on Feedstock and Pyrolyzation Properties with Particular Emphasis on Biological Properties," Agriculture, MDPI, vol. 13(10), pages 1-39, October.
    9. Mohammad Ghorbani & Petr Konvalina & Anna Walkiewicz & Reinhard W. Neugschwandtner & Marek Kopecký & Kazem Zamanian & Wei-Hsin Chen & Daniel Bucur, 2022. "Feasibility of Biochar Derived from Sewage Sludge to Promote Sustainable Agriculture and Mitigate GHG Emissions—A Review," IJERPH, MDPI, vol. 19(19), pages 1-23, October.
    10. Caterina Lucia & Daniela Pampinella & Eristanna Palazzolo & Luigi Badalucco & Vito Armando Laudicina, 2023. "From Waste to Resources: Sewage Sludges from the Citrus Processing Industry to Improve Soil Fertility and Performance of Lettuce ( Lactuca sativa L.)," Agriculture, MDPI, vol. 13(4), pages 1-12, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:14:p:10909-:d:1192025. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.