IDEAS home Printed from https://ideas.repec.org/a/gam/jagris/v13y2023i2p288-d1046670.html
   My bibliography  Save this article

Precision Livestock Farming Applications (PLF) for Grazing Animals

Author

Listed:
  • Christos Tzanidakis

    (Laboratory of Animal Breeding and Husbandry, Department of Animal Science, Agricultural University of Athens, 75 Iera Odos, 11855 Athens, Greece)

  • Ouranios Tzamaloukas

    (Department of Agricultural Sciences, Biotechnology and Food Science, Cyprus University of Technology, Limassol 3036, Cyprus)

  • Panagiotis Simitzis

    (Laboratory of Animal Breeding and Husbandry, Department of Animal Science, Agricultural University of Athens, 75 Iera Odos, 11855 Athens, Greece)

  • Panagiotis Panagakis

    (Laboratory of Farm Structures, Department of Natural Resources Management and Agricultural Engineering, Agricultural University of Athens, 75 Iera Odos, 11855 Athens, Greece)

Abstract

Over the past four decades the dietary needs of the global population have been elevated, with increased consumption of animal products predominately due to the advancing economies of South America and Asia. As a result, livestock production systems have expanded in size, with considerable changes to the animals’ management. As grazing animals are commonly grown in herds, economic and labour constraints limit the ability of the producer to individually assess every animal. Precision Livestock Farming refers to the real-time continuous monitoring and control systems using sensors and computer algorithms for early problem detection, while simultaneously increasing producer awareness concerning individual animal needs. These technologies include automatic weighing systems, Radio Frequency Identification (RFID) sensors for individual animal detection and behaviour monitoring, body temperature monitoring, geographic information systems (GIS) for pasture evaluation and optimization, unmanned aerial vehicles (UAVs) for herd management, and virtual fencing for herd and grazing management. Although some commercial products are available, mainly for cattle, the adoption of these systems is limited due to economic and cultural constraints and poor technological infrastructure. This review presents and discusses PLF applications and systems for grazing animals and proposes future research and strategies to improve PLF adoption and utilization in today’s extensive livestock systems.

Suggested Citation

  • Christos Tzanidakis & Ouranios Tzamaloukas & Panagiotis Simitzis & Panagiotis Panagakis, 2023. "Precision Livestock Farming Applications (PLF) for Grazing Animals," Agriculture, MDPI, vol. 13(2), pages 1-23, January.
  • Handle: RePEc:gam:jagris:v:13:y:2023:i:2:p:288-:d:1046670
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2077-0472/13/2/288/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2077-0472/13/2/288/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Kuehne, Geoff & Llewellyn, Rick & Pannell, David J. & Wilkinson, Roger & Dolling, Perry & Ouzman, Jackie & Ewing, Mike, 2017. "Predicting farmer uptake of new agricultural practices: A tool for research, extension and policy," Agricultural Systems, Elsevier, vol. 156(C), pages 115-125.
    2. Rieple, Alison & Snijders, Sylvia, 2018. "The role of emotions in the choice to adopt, or resist, innovations by Irish dairy farmers," Journal of Business Research, Elsevier, vol. 85(C), pages 23-31.
    3. Eastwood, C.R. & Chapman, D.F. & Paine, M.S., 2012. "Networks of practice for co-construction of agricultural decision support systems: Case studies of precision dairy farms in Australia," Agricultural Systems, Elsevier, vol. 108(C), pages 10-18.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. David D. J. Antia, 2023. "Desalination of Saline Irrigation Water Using Hydrophobic, Metal–Polymer Hydrogels," Sustainability, MDPI, vol. 15(9), pages 1-32, April.
    2. Dongli Wu & Shan He & Lingui Qin & Jingyue Feng & Yu Gao, 2024. "Role of Policy-Supported Hog Insurance in Promoting Green Total Factor Productivity: The Case of China during 2005–2021," Agriculture, MDPI, vol. 14(7), pages 1-24, June.
    3. Sudhanshu S. Panda & Thomas H. Terrill & Aftab Siddique & Ajit K. Mahapatra & Eric R. Morgan & Andres A. Pech-Cervantes & Jan A. Van Wyk, 2024. "Development of a Decision Support System for Animal Health Management Using Geo-Information Technology: A Novel Approach to Precision Livestock Management," Agriculture, MDPI, vol. 14(5), pages 1-20, April.
    4. Dangguo Shao & Zihan He & Hongbo Fan & Kun Sun, 2023. "Detection of Cattle Key Parts Based on the Improved Yolov5 Algorithm," Agriculture, MDPI, vol. 13(6), pages 1-16, May.
    5. Oratilwe Penwell Mokoena & Thembelihle Sam Ntuli & Tshepo Ramarumo & Solly Matshonisa Seeletse, 2023. "Sustainability of Rural Small-Scale Farmers Using a Thematic Content-Fed Analytic Hierarchy Process," Sustainability, MDPI, vol. 15(15), pages 1-22, August.
    6. Verónica Cruz Moriana & Juan Manuel Mancilla-Leytón & Yolanda Mena & Francisco de Asís Ruiz Morales, 2024. "Identification of the Multifunctionality of Andalusian Autochthonous Pastoral Livestock Breeds at the Farm Level," Agriculture, MDPI, vol. 14(4), pages 1-17, April.
    7. Mohammad Shamsuddoha & Tasnuba Nasir, 2025. "Smart Practices in Modern Dairy Farming in Bangladesh: Integrating Technological Transformations for Sustainable Responsibility," Administrative Sciences, MDPI, vol. 15(2), pages 1-27, January.
    8. Mengmeng Wang & Meng Lv & Haoting Liu & Qing Li, 2023. "Mid-Infrared Sheep Segmentation in Highland Pastures Using Multi-Level Region Fusion OTSU Algorithm," Agriculture, MDPI, vol. 13(7), pages 1-22, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jotham Akaka & Aurora García-Gallego & Nikolaos Georgantzís & Jean-Christian Tisserand, 2021. "Decision support systems adoption in pesticide management," Working Papers 2021/08, Economics Department, Universitat Jaume I, Castellón (Spain).
    2. Ara, Iffat & Turner, Lydia & Harrison, Matthew Tom & Monjardino, Marta & deVoil, Peter & Rodriguez, Daniel, 2021. "Application, adoption and opportunities for improving decision support systems in irrigated agriculture: A review," Agricultural Water Management, Elsevier, vol. 257(C).
    3. Eastwood, C.R. & Turner, F.J. & Romera, A.J., 2022. "Farmer-centred design: An affordances-based framework for identifying processes that facilitate farmers as co-designers in addressing complex agricultural challenges," Agricultural Systems, Elsevier, vol. 195(C).
    4. Selvaggi, R. & Pappalardo, G. & Zarbà, C. & Lusk, J.L., 2024. "Driving factors behind precision livestock farming tools adoption: The case of the pedometer on dairy farms," Agricultural Systems, Elsevier, vol. 220(C).
    5. Oscar Montes de Oca Munguia & Rick Llewellyn, 2020. "The Adopters versus the Technology: Which Matters More when Predicting or Explaining Adoption?," Applied Economic Perspectives and Policy, John Wiley & Sons, vol. 42(1), pages 80-91, March.
    6. Shang, Linmei & Heckelei, Thomas & Gerullis, Maria K. & Börner, Jan & Rasch, Sebastian, 2021. "Adoption and diffusion of digital farming technologies - integrating farm-level evidence and system interaction," Agricultural Systems, Elsevier, vol. 190(C).
    7. Mohamed Ghali & Maha Ben Jaballah & Nejla Ben Arfa & Annie Sigwalt, 2022. "Analysis of factors that influence adoption of agroecological practices in viticulture," Review of Agricultural, Food and Environmental Studies, Springer, vol. 103(3), pages 179-209, September.
    8. Ufer, Danielle J. & Ortega, David L. & Wolf, Christopher A. & McKendree, Melissa & Swanson, Janice, 2022. "Getting past the gatekeeper: Key motivations of dairy farmer intent to adopt animal health and welfare-improving biotechnology," Food Policy, Elsevier, vol. 112(C).
    9. Snow, Stephen & Fielke, Simon & Fleming, Aysha & Jakku, Emma & Malakar, Yuwan & Turner, Charles & Hunter, Tammy & Tijs, Sigrid & Bonnett, Graham, 2024. "Climate services for agriculture: Steering towards inclusive innovation in Australian climate services design and delivery," Agricultural Systems, Elsevier, vol. 217(C).
    10. Amare, Dagninet & Darr, Dietrich, 2024. "Holistic analysis of factors influencing the adoption of agroforestry to foster forest sector based climate solutions," Forest Policy and Economics, Elsevier, vol. 164(C).
    11. Balaine, Lorraine & Dillon, Emma J. & Läpple, Doris & Lynch, John, 2020. "Can technology help achieve sustainable intensification? Evidence from milk recording on Irish dairy farms," Land Use Policy, Elsevier, vol. 92(C).
    12. Mugula, Joseph J & Ahmad, Athman Kyaruzi & Msinde, John & Kadigi, Michael, 2023. "Determinants of Adoption of Bundled Sustainable Agriculture Practices among Small-Scale Maize Farmers in Mvomero and Kilosa Districts, Tanzania," African Journal of Economic Review, African Journal of Economic Review, vol. 11(4), September.
    13. Aravindakshan, Sreejith & Krupnik, Timothy J. & Amjath-Babu, T.S. & Speelman, Stijn & Tur-Cardona, Juan & Tittonell, Pablo & Groot, Jeroen C.J., 2021. "Quantifying farmers' preferences for cropping systems intensification: A choice experiment approach applied in coastal Bangladesh's risk prone farming systems," Agricultural Systems, Elsevier, vol. 189(C).
    14. Moglia, Magnus & Alexander, Kim S. & Thephavanh, Manithaythip & Thammavong, Phomma & Sodahak, Viengkham & Khounsy, Bountom & Vorlasan, Sysavanh & Larson, Silva & Connell, John & Case, Peter, 2018. "A Bayesian network model to explore practice change by smallholder rice farmers in Lao PDR," Agricultural Systems, Elsevier, vol. 164(C), pages 84-94.
    15. Kim S. Alexander & Garry Greenhalgh & Magnus Moglia & Manithaythip Thephavanh & Phonevilay Sinavong & Silva Larson & Tom Jovanovic & Peter Case, 2020. "What is technology adoption? Exploring the agricultural research value chain for smallholder farmers in Lao PDR," Agriculture and Human Values, Springer;The Agriculture, Food, & Human Values Society (AFHVS), vol. 37(1), pages 17-32, March.
    16. Martha Swamila & Damas Philip & Adam Meshack Akyoo & Stefan Sieber & Mateete Bekunda & Anthony Anderson Kimaro, 2020. "Gliricidia Agroforestry Technology Adoption Potential in Selected Dryland Areas of Dodoma Region, Tanzania," Agriculture, MDPI, vol. 10(7), pages 1-17, July.
    17. Yang, Huan & Klerkx, Laurens & Leeuwis, Cees, 2014. "Functions and limitations of farmer cooperatives as innovation intermediaries: Findings from China," Agricultural Systems, Elsevier, vol. 127(C), pages 115-125.
    18. Sun, Yong & Miao, Yiling & Xie, Zhiju & Wu, Runtian, 2024. "Drivers and barriers to digital transformation in agriculture: An evolutionary game analysis based on the experience of China," Agricultural Systems, Elsevier, vol. 221(C).
    19. Ran Sun & James Nolan & Suren Kulshreshtha, 2022. "Agent-based modeling of policy induced agri-environmental technology adoption," SN Business & Economics, Springer, vol. 2(8), pages 1-26, August.
    20. Mamiya Binte Ahsan & Guo Leifeng & Fardous Mohammad Safiul Azam & Beibei Xu & Shah Johir Rayhan & Abdul Kaium & Wang Wensheng, 2022. "Barriers, Challenges, and Requirements for ICT Usage among Sub-Assistant Agricultural Officers in Bangladesh: Toward Sustainability in Agriculture," Sustainability, MDPI, vol. 15(1), pages 1-27, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jagris:v:13:y:2023:i:2:p:288-:d:1046670. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.