IDEAS home Printed from https://ideas.repec.org/a/gam/jagris/v12y2022i9p1305-d897770.html
   My bibliography  Save this article

Maturity Classification of “Hupingzao” Jujubes with an Imbalanced Dataset Based on Improved MobileNet V2

Author

Listed:
  • Haixia Sun

    (College of Agricultural Engineering, Shanxi Agricultural University, Jinzhong 030801, China)

  • Shujuan Zhang

    (College of Agricultural Engineering, Shanxi Agricultural University, Jinzhong 030801, China)

  • Rui Ren

    (College of Agricultural Engineering, Shanxi Agricultural University, Jinzhong 030801, China)

  • Liyang Su

    (College of Agricultural Engineering, Shanxi Agricultural University, Jinzhong 030801, China)

Abstract

Fruits with various maturity levels coexist among the harvested jujubes, and have different tastes and uses. Manual grading has a low efficiency and a strong subjectivity. The number of “Hupingzao” jujubes between different maturity levels is unbalanced, which affects the performance of the classifier. To solve the above issue, the class balance loss (CB) was used to improve the MobileNet V2 network, and a transfer learning strategy was used to train the model. The model was optimized based on the selection of an optimizer and learning rate. The model achieved the best classification results using the AdamW optimizer and a learning rate of 0.0001. The application of transfer learning and class balance loss improved the model’s performance. The precision was 96.800~100.000%, the recall was 95.833~100.000%, and the F1 score was 0.963~1.000. To compare the CB-MobileNet V2 performance, the CB-AlexNet, CB-GoogLeNet, CB-ShuffleNet, CB-Inception V3, CB-ResNet 50, and CB-VGG 16 with transfer learning were used to build classification models. Achieving a validation accuracy of 99.058%, and a validation loss value of 0.055, the CB-MobileNet V2 model showed a better overall performance compared with other models. The maturity detection system of “Hupingzao” jujubes was developed to test the model. The testing accuracy of the CB-MobileNet V2 model was 99.294%. The research indicates that the CB-MobileNet V2 model improves the performance of maturity classification, and provides a theoretical basis for intelligent classification of the quality of “Hupingzao” jujubes.

Suggested Citation

  • Haixia Sun & Shujuan Zhang & Rui Ren & Liyang Su, 2022. "Maturity Classification of “Hupingzao” Jujubes with an Imbalanced Dataset Based on Improved MobileNet V2," Agriculture, MDPI, vol. 12(9), pages 1-16, August.
  • Handle: RePEc:gam:jagris:v:12:y:2022:i:9:p:1305-:d:897770
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2077-0472/12/9/1305/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2077-0472/12/9/1305/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Khalied Albarrak & Yonis Gulzar & Yasir Hamid & Abid Mehmood & Arjumand Bano Soomro, 2022. "A Deep Learning-Based Model for Date Fruit Classification," Sustainability, MDPI, vol. 14(10), pages 1-16, May.
    2. Alper Taner & Yeşim Benal Öztekin & Hüseyin Duran, 2021. "Performance Analysis of Deep Learning CNN Models for Variety Classification in Hazelnut," Sustainability, MDPI, vol. 13(12), pages 1-13, June.
    3. Justin M. Johnson & Taghi M. Khoshgoftaar, 2020. "The Effects of Data Sampling with Deep Learning and Highly Imbalanced Big Data," Information Systems Frontiers, Springer, vol. 22(5), pages 1113-1131, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zeqing Yang & Zhimeng Li & Ning Hu & Mingxuan Zhang & Wenbo Zhang & Lingxiao Gao & Xiangyan Ding & Zhengpan Qi & Shuyong Duan, 2023. "Multi-Index Grading Method for Pear Appearance Quality Based on Machine Vision," Agriculture, MDPI, vol. 13(2), pages 1-21, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yang Chen & Xiaoyulong Chen & Jianwu Lin & Renyong Pan & Tengbao Cao & Jitong Cai & Dianzhi Yu & Tomislav Cernava & Xin Zhang, 2022. "DFCANet: A Novel Lightweight Convolutional Neural Network Model for Corn Disease Identification," Agriculture, MDPI, vol. 12(12), pages 1-22, November.
    2. Yoon Sang Lee & Chulhwan Chris Bang, 2022. "Framework for the Classification of Imbalanced Structured Data Using Under-sampling and Convolutional Neural Network," Information Systems Frontiers, Springer, vol. 24(6), pages 1795-1809, December.
    3. Rui Ma & Jia Wang & Wei Zhao & Hongjie Guo & Dongnan Dai & Yuliang Yun & Li Li & Fengqi Hao & Jinqiang Bai & Dexin Ma, 2022. "Identification of Maize Seed Varieties Using MobileNetV2 with Improved Attention Mechanism CBAM," Agriculture, MDPI, vol. 13(1), pages 1-16, December.
    4. Lu Lu & Wei Liu & Wenbo Yang & Manyu Zhao & Tinghao Jiang, 2022. "Lightweight Corn Seed Disease Identification Method Based on Improved ShuffleNetV2," Agriculture, MDPI, vol. 12(11), pages 1-18, November.
    5. Lydia Bouzar-Benlabiod & Stuart H. Rubin, 2020. "Heuristic Acquisition for Data Science," Information Systems Frontiers, Springer, vol. 22(5), pages 1001-1007, October.
    6. Mahdieh Parsaeian & Mohammad Rahimi & Abbas Rohani & Shaneka S. Lawson, 2022. "Towards the Modeling and Prediction of the Yield of Oilseed Crops: A Multi-Machine Learning Approach," Agriculture, MDPI, vol. 12(10), pages 1-23, October.
    7. Christian Kauten & Ashish Gupta & Xiao Qin & Glenn Richey, 2022. "Predicting Blood Donors Using Machine Learning Techniques," Information Systems Frontiers, Springer, vol. 24(5), pages 1547-1562, October.
    8. Normaisharah Mamat & Mohd Fauzi Othman & Rawad Abdulghafor & Ali A. Alwan & Yonis Gulzar, 2023. "Enhancing Image Annotation Technique of Fruit Classification Using a Deep Learning Approach," Sustainability, MDPI, vol. 15(2), pages 1-19, January.
    9. Sonam Aggarwal & Sheifali Gupta & Deepali Gupta & Yonis Gulzar & Sapna Juneja & Ali A. Alwan & Ali Nauman, 2023. "An Artificial Intelligence-Based Stacked Ensemble Approach for Prediction of Protein Subcellular Localization in Confocal Microscopy Images," Sustainability, MDPI, vol. 15(2), pages 1-20, January.
    10. Yonis Gulzar & Zeynep Ünal & Hakan Aktaş & Mohammad Shuaib Mir, 2023. "Harnessing the Power of Transfer Learning in Sunflower Disease Detection: A Comparative Study," Agriculture, MDPI, vol. 13(8), pages 1-17, July.
    11. Haitham Abdulmohsin Afan & Ayman Yafouz & Ahmed H. Birima & Ali Najah Ahmed & Ozgur Kisi & Barkha Chaplot & Ahmed El-Shafie, 2022. "Linear and stratified sampling-based deep learning models for improving the river streamflow forecasting to mitigate flooding disaster," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 112(2), pages 1527-1545, June.
    12. Younés Noutfia & Ewa Ropelewska, 2022. "Comprehensive Characterization of Date Palm Fruit ‘Mejhoul’ ( Phoenix dactylifera L.) Using Image Analysis and Quality Attribute Measurements," Agriculture, MDPI, vol. 13(1), pages 1-12, December.
    13. Shanxin Zhang & Hao Feng & Shaoyu Han & Zhengkai Shi & Haoran Xu & Yang Liu & Haikuan Feng & Chengquan Zhou & Jibo Yue, 2022. "Monitoring of Soybean Maturity Using UAV Remote Sensing and Deep Learning," Agriculture, MDPI, vol. 13(1), pages 1-21, December.
    14. Jiapeng Cui & Feng Tan, 2023. "Rice Plaque Detection and Identification Based on an Improved Convolutional Neural Network," Agriculture, MDPI, vol. 13(1), pages 1-15, January.
    15. Rodrigo Cupertino Bernardes & André De Medeiros & Laercio da Silva & Leo Cantoni & Gustavo Ferreira Martins & Thiago Mastrangelo & Arthur Novikov & Clíssia Barboza Mastrangelo, 2022. "Deep-Learning Approach for Fusarium Head Blight Detection in Wheat Seeds Using Low-Cost Imaging Technology," Agriculture, MDPI, vol. 12(11), pages 1-14, October.
    16. Maged Mohammed & Ramasamy Srinivasagan & Ali Alzahrani & Nashi K. Alqahtani, 2023. "Machine-Learning-Based Spectroscopic Technique for Non-Destructive Estimation of Shelf Life and Quality of Fresh Fruits Packaged under Modified Atmospheres," Sustainability, MDPI, vol. 15(17), pages 1-24, August.
    17. Seoro Lee & Jonggun Kim & Gwanjae Lee & Jiyeong Hong & Joo Hyun Bae & Kyoung Jae Lim, 2021. "Prediction of Aquatic Ecosystem Health Indices through Machine Learning Models Using the WGAN-Based Data Augmentation Method," Sustainability, MDPI, vol. 13(18), pages 1-20, September.
    18. Xinle Zhang & Jian Cui & Huanjun Liu & Yongqi Han & Hongfu Ai & Chang Dong & Jiaru Zhang & Yunxiang Chu, 2023. "Weed Identification in Soybean Seedling Stage Based on Optimized Faster R-CNN Algorithm," Agriculture, MDPI, vol. 13(1), pages 1-16, January.
    19. Yonis Gulzar, 2023. "Fruit Image Classification Model Based on MobileNetV2 with Deep Transfer Learning Technique," Sustainability, MDPI, vol. 15(3), pages 1-14, January.
    20. Shahnawaz Ayoub & Yonis Gulzar & Jaloliddin Rustamov & Abdoh Jabbari & Faheem Ahmad Reegu & Sherzod Turaev, 2023. "Adversarial Approaches to Tackle Imbalanced Data in Machine Learning," Sustainability, MDPI, vol. 15(9), pages 1-17, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jagris:v:12:y:2022:i:9:p:1305-:d:897770. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.