IDEAS home Printed from https://ideas.repec.org/a/spr/infosf/v24y2022i5d10.1007_s10796-021-10149-1.html
   My bibliography  Save this article

Predicting Blood Donors Using Machine Learning Techniques

Author

Listed:
  • Christian Kauten

    (Auburn University)

  • Ashish Gupta

    (Auburn University)

  • Xiao Qin

    (Auburn University)

  • Glenn Richey

    (Auburn University)

Abstract

The United States’ blood supply chain is experiencing market decline due to recent innovations in surgical practice, transfusion management, and hospital policy. These innovations strain US blood centers, resulting in cuts to surge capacities, consolidation, and reduced funding for research and outreach programs. In this study, we use data from a regional blood center to explore the application of contemporary machine learning algorithms for modeling donor retention. Such predictive models of donor retention can be used to design more cost effective donor outreach programs. Using data from a large US blood center paired with random forest classifiers, we are able to build a model of donor retention with a Mathews correlation of coefficient of 0.851.

Suggested Citation

  • Christian Kauten & Ashish Gupta & Xiao Qin & Glenn Richey, 2022. "Predicting Blood Donors Using Machine Learning Techniques," Information Systems Frontiers, Springer, vol. 24(5), pages 1547-1562, October.
  • Handle: RePEc:spr:infosf:v:24:y:2022:i:5:d:10.1007_s10796-021-10149-1
    DOI: 10.1007/s10796-021-10149-1
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10796-021-10149-1
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10796-021-10149-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Andres F. Osorio & Sally C. Brailsford & Honora K. Smith, 2015. "A structured review of quantitative models in the blood supply chain: a taxonomic framework for decision-making," International Journal of Production Research, Taylor & Francis Journals, vol. 53(24), pages 7191-7212, December.
    2. Justin M. Johnson & Taghi M. Khoshgoftaar, 2020. "The Effects of Data Sampling with Deep Learning and Highly Imbalanced Big Data," Information Systems Frontiers, Springer, vol. 22(5), pages 1113-1131, October.
    3. Babak Abbasi & Golnaz Vakili & Stuart Chesneau, 2017. "Impacts of Reducing the Shelf Life of Red Blood Cells: A View from Down Under," Interfaces, INFORMS, vol. 47(4), pages 336-351, August.
    4. Baş, Seda & Carello, Giuliana & Lanzarone, Ettore & Yalçındağ, Semih, 2018. "An appointment scheduling framework to balance the production of blood units from donation," European Journal of Operational Research, Elsevier, vol. 265(3), pages 1124-1143.
    5. Bram Klievink & Bart-Jan Romijn & Scott Cunningham & Hans Bruijn, 2017. "Big data in the public sector: Uncertainties and readiness," Information Systems Frontiers, Springer, vol. 19(2), pages 267-283, April.
    6. Leipnitz, Sigrun & de Vries, Martha & Clement, Michel & Mazar, Nina, 2018. "Providing health checks as incentives to retain blood donors — Evidence from two field experiments," International Journal of Research in Marketing, Elsevier, vol. 35(4), pages 628-640.
    7. Afshin Kamyabniya & M. M. Lotfi & Mohsen Naderpour & Yuehwern Yih, 2018. "Robust Platelet Logistics Planning in Disaster Relief Operations Under Uncertainty: a Coordinated Approach," Information Systems Frontiers, Springer, vol. 20(4), pages 759-782, August.
    8. Ashish Gupta & Amit Deokar & Lakshmi Iyer & Ramesh Sharda & Dave Schrader, 2018. "Big Data & Analytics for Societal Impact: Recent Research and Trends," Information Systems Frontiers, Springer, vol. 20(2), pages 185-194, April.
    9. Beliën, Jeroen & Forcé, Hein, 2012. "Supply chain management of blood products: A literature review," European Journal of Operational Research, Elsevier, vol. 217(1), pages 1-16.
    10. Salima Smiti & Makram Soui, 2020. "Bankruptcy Prediction Using Deep Learning Approach Based on Borderline SMOTE," Information Systems Frontiers, Springer, vol. 22(5), pages 1067-1083, October.
    11. Sabri Boughorbel & Fethi Jarray & Mohammed El-Anbari, 2017. "Optimal classifier for imbalanced data using Matthews Correlation Coefficient metric," PLOS ONE, Public Library of Science, vol. 12(6), pages 1-17, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hosseini-Motlagh, Seyyed-Mahdi & Samani, Mohammad Reza Ghatreh & Homaei, Shamim, 2020. "Toward a coordination of inventory and distribution schedules for blood in disasters," Socio-Economic Planning Sciences, Elsevier, vol. 72(C).
    2. Sara Cheraghi & Seyyed-Mahdi Hosseini-Motlagh, 2020. "Responsive and reliable injured-oriented blood supply chain for disaster relief: a real case study," Annals of Operations Research, Springer, vol. 291(1), pages 129-167, August.
    3. Kamyabniya, Afshin & Noormohammadzadeh, Zohre & Sauré, Antoine & Patrick, Jonathan, 2021. "A robust integrated logistics model for age-based multi-group platelets in disaster relief operations," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 152(C).
    4. Dehghani, Maryam & Abbasi, Babak & Oliveira, Fabricio, 2021. "Proactive transshipment in the blood supply chain: A stochastic programming approach," Omega, Elsevier, vol. 98(C).
    5. Nagurney, Anna & Dutta, Pritha, 2019. "Competition for blood donations," Omega, Elsevier, vol. 85(C), pages 103-114.
    6. Hosseini-Motlagh, Seyyed-Mahdi & Samani, Mohammad Reza Ghatreh & Cheraghi, Sara, 2020. "Robust and stable flexible blood supply chain network design under motivational initiatives," Socio-Economic Planning Sciences, Elsevier, vol. 70(C).
    7. Asadpour, Milad & Olsen, Tava Lennon & Boyer, Omid, 2022. "An updated review on blood supply chain quantitative models: A disaster perspective," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 158(C).
    8. Yoon Sang Lee & Chulhwan Chris Bang, 2022. "Framework for the Classification of Imbalanced Structured Data Using Under-sampling and Convolutional Neural Network," Information Systems Frontiers, Springer, vol. 24(6), pages 1795-1809, December.
    9. Samani, Mohammad Reza Ghatreh & Hosseini-Motlagh, Seyyed-Mahdi & Homaei, Shamim, 2020. "A reactive phase against disruptions for designing a proactive platelet supply network," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 140(C).
    10. Chua, Geoffrey A. & Senga, Juan Ramon L., 2022. "Blood supply interventions during disasters: Efficiency measures and strategies to mitigate volatility," Socio-Economic Planning Sciences, Elsevier, vol. 84(C).
    11. Anna Nagurney & Pritha Dutta, 2019. "Supply chain network competition among blood service organizations: a Generalized Nash Equilibrium framework," Annals of Operations Research, Springer, vol. 275(2), pages 551-586, April.
    12. Lowalekar, Harshal & Ravi, R. Raghavendra, 2017. "Revolutionizing blood bank inventory management using the TOC thinking process: An Indian case study," International Journal of Production Economics, Elsevier, vol. 186(C), pages 89-122.
    13. Kees, M. Celeste & Bandoni, J. Alberto & Moreno, M. Susana, 2022. "A multi-period fuzzy optimization strategy for managing a centralized blood supply chain," Socio-Economic Planning Sciences, Elsevier, vol. 84(C).
    14. Dillon, Mary & Oliveira, Fabricio & Abbasi, Babak, 2017. "A two-stage stochastic programming model for inventory management in the blood supply chain," International Journal of Production Economics, Elsevier, vol. 187(C), pages 27-41.
    15. Onur Kaya & Dogus Ozkok, 2020. "A Blood Bank Network Design Problem with Integrated Facility Location, Inventory and Routing Decisions," Networks and Spatial Economics, Springer, vol. 20(3), pages 757-783, September.
    16. Mohammad Reza Ghatreh Samani & Seyyed-Mahdi Hosseini-Motlagh, 2019. "An enhanced procedure for managing blood supply chain under disruptions and uncertainties," Annals of Operations Research, Springer, vol. 283(1), pages 1413-1462, December.
    17. Mohsen Momenitabar & Zhila Dehdari Ebrahimi & Mohammad Arani & Jeremy Mattson, 2023. "Robust possibilistic programming to design a closed-loop blood supply chain network considering service-level maximization and lateral resupply," Annals of Operations Research, Springer, vol. 328(1), pages 859-901, September.
    18. Diabat, Ali & Jabbarzadeh, Armin & Khosrojerdi, Amir, 2019. "A perishable product supply chain network design problem with reliability and disruption considerations," International Journal of Production Economics, Elsevier, vol. 212(C), pages 125-138.
    19. Ana Margarida Araújo & Daniel Santos & Inês Marques & Ana Barbosa-Povoa, 2020. "Blood supply chain: a two-stage approach for tactical and operational planning," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 42(4), pages 1023-1053, December.
    20. Dehghani, Maryam & Abbasi, Babak, 2018. "An age-based lateral-transshipment policy for perishable items," International Journal of Production Economics, Elsevier, vol. 198(C), pages 93-103.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:infosf:v:24:y:2022:i:5:d:10.1007_s10796-021-10149-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.