Prediction of Corn Yield in the USA Corn Belt Using Satellite Data and Machine Learning: From an Evapotranspiration Perspective
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Zhou, Li & Wang, Yu & Jia, Qingyu & Li, Rongping & Zhou, Mengzi & Zhou, Guangsheng, 2019. "Evapotranspiration over a rainfed maize field in northeast China: How are relationships between the environment and terrestrial evapotranspiration mediated by leaf area?," Agricultural Water Management, Elsevier, vol. 221(C), pages 538-546.
- Unkovich, Murray & Baldock, Jeff & Farquharson, Ryan, 2018. "Field measurements of bare soil evaporation and crop transpiration, and transpiration efficiency, for rainfed grain crops in Australia – A review," Agricultural Water Management, Elsevier, vol. 205(C), pages 72-80.
- Yulin Shen & Benoît Mercatoris & Zhen Cao & Paul Kwan & Leifeng Guo & Hongxun Yao & Qian Cheng, 2022. "Improving Wheat Yield Prediction Accuracy Using LSTM-RF Framework Based on UAV Thermal Infrared and Multispectral Imagery," Agriculture, MDPI, vol. 12(6), pages 1-13, June.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Pankaj Das & Girish Kumar Jha & Achal Lama & Rajender Parsad, 2023. "Crop Yield Prediction Using Hybrid Machine Learning Approach: A Case Study of Lentil ( Lens culinaris Medik.)," Agriculture, MDPI, vol. 13(3), pages 1-13, February.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Gustavo Castilho Beruski & Luis Miguel Schiebelbein & André Belmont Pereira, 2020. "Maize Yield Components as Affected by Plant Population, Planting Date and Soil Coverings in Brazil," Agriculture, MDPI, vol. 10(12), pages 1-20, November.
- Nandi, R. & Mondal, K. & Singh, K.C. & Saha, M. & Bandyopadhyay, P.K. & Ghosh, P.K., 2021. "Yield-water relationships of lentil grown under different rice establishments in Lower Gangetic Plain of India," Agricultural Water Management, Elsevier, vol. 246(C).
- Li, Cheng & Li, Zhaozhe & Zhang, Fangmin & Lu, Yanyu & Duan, Chunfeng & Xu, Yang, 2023. "Seasonal dynamics of carbon dioxide and water fluxes in a rice-wheat rotation system in the Yangtze-Huaihe region of China," Agricultural Water Management, Elsevier, vol. 275(C).
- Yan, Zhenxing & Zhang, Wenying & Liu, Xiuwei & Wang, Qingsuo & Liu, Binhui & Mei, Xurong, 2024. "Grain yield and water productivity of winter wheat controlled by irrigation regime and manure substitution in the North China Plain," Agricultural Water Management, Elsevier, vol. 295(C).
- Chin-Hung Kuan & Yungho Leu & Wen-Shin Lin & Chien-Pang Lee, 2022. "The Estimation of the Long-Term Agricultural Output with a Robust Machine Learning Prediction Model," Agriculture, MDPI, vol. 12(8), pages 1-15, July.
- Mohammed, Ali T. & Irmak, Suat, 2022. "Maize response to irrigation and nitrogen under center pivot, subsurface drip and furrow irrigation: Water productivity, basal evapotranspiration and yield response factors," Agricultural Water Management, Elsevier, vol. 271(C).
- Tianyi Yang & Haichao Yu & Sien Li & Xiangning Yuan & Xiang Ao & Haochong Chen & Yuexin Wang & Jie Ding, 2024. "Driving Factors and Numerical Simulation of Evapotranspiration of a Typical Cabbage Agroecosystem in the Shiyang River Basin, Northwest China," Agriculture, MDPI, vol. 14(6), pages 1-14, June.
- Yang, Wenjia & Yan, Naitong & Zhang, Jiali & Yan, Jiakun & Ma, Dengke & Wang, Shiwen & Yin, Lina, 2022. "The applicability of water-permeable plastic film and biodegradable film as alternatives to polyethylene film in crops on the Loess Plateau," Agricultural Water Management, Elsevier, vol. 274(C).
- Bian, Jiang & Hu, Xiaolong & Shi, Liangsheng & Min, Leilei & Zhang, Yucui & Shen, Yanjun & Zhao, Fenghua & Zha, Yuanyuan & Lian, Xie & Huang, Jiesheng, 2024. "Evapotranspiration partitioning by integrating eddy covariance, micro-lysimeter and unmanned aerial vehicle observations: A case study in the North China Plain," Agricultural Water Management, Elsevier, vol. 295(C).
- Di Wang, & Wang, Li, 2023. "Characteristics of soil evaporation at two stages of growth in apple orchards with different ages in a semi-humid region," Agricultural Water Management, Elsevier, vol. 280(C).
- Peng, Manman & Han, Wenting & Li, Chaoqun & Li, Guang & Yao, Xiaomin & Zhang, Mengfei, 2021. "Diurnal and seasonal CO2 exchange and yield of maize cropland under different irrigation treatments in semiarid Inner Mongolia," Agricultural Water Management, Elsevier, vol. 255(C).
- Heba Alzaben & Roydon Fraser & Clarence Swanton, 2021. "The Role of Engineering Thermodynamics in Explaining the Inverse Correlation between Surface Temperature and Supplied Nitrogen Rate in Corn Plants: A Greenhouse Case Study," Agriculture, MDPI, vol. 11(2), pages 1-16, January.
- Jiang, Shouzheng & Zhao, Lu & Liang, Chuan & Hu, Xiaotao & Yaosheng, Wang & Gong, Daozhi & Zheng, Shunsheng & Huang, Yaowei & He, QingYan & Cui, Ningbo, 2022. "Leaf- and ecosystem-scale water use efficiency and their controlling factors of a kiwifruit orchard in the humid region of Southwest China," Agricultural Water Management, Elsevier, vol. 260(C).
- Forrester, David I. & England, Jacqueline R. & Paul, Keryn I. & Roxburgh, Stephen H., 2024. "Sensitivity analysis of the FullCAM model: Context dependency and implications for model development to predict Australia's forest carbon stocks," Ecological Modelling, Elsevier, vol. 489(C).
- Fang, Heng & Li, Yuannong & Gu, Xiaobo & Yu, Meng & Chen, Pengpeng & Li, Yupeng & Liu, Fulai, 2022. "Optimizing the impact of film mulching pattern and nitrogen application rate on maize production, gaseous N emissions, and utilization of water and nitrogen in northwest China," Agricultural Water Management, Elsevier, vol. 261(C).
- Dong, Juan & Zhu, Yuanjun & Cui, Ningbo & Jia, Xiaoxu & Guo, Li & Qiu, Rangjian & Shao, Ming’an, 2024. "Estimating crop evapotranspiration of wheat-maize rotation system using hybrid convolutional bidirectional Long Short-Term Memory network with grey wolf algorithm in Chinese Loess Plateau region," Agricultural Water Management, Elsevier, vol. 301(C).
- Zheng, Han & Sun, Yuchen & Bao, Han & Niu, Panpan & Jin, Zhao & Niu, Zhongen, 2024. "Drought effects on evapotranspiration and energy exchange over a rain-fed maize cropland in the Chinese Loess Plateau," Agricultural Water Management, Elsevier, vol. 293(C).
- Nyathi, M.K. & Mabhaudhi, T. & Van Halsema, G.E. & Annandale, J.G. & Struik, P.C., 2019. "Benchmarking nutritional water productivity of twenty vegetables - A review," Agricultural Water Management, Elsevier, vol. 221(C), pages 248-259.
More about this item
Keywords
EVI; LAI; LST; LSTM; MODIS;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jagris:v:12:y:2022:i:8:p:1263-:d:892760. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.