IDEAS home Printed from https://ideas.repec.org/a/gam/jagris/v13y2023i3p596-d1084021.html
   My bibliography  Save this article

Crop Yield Prediction Using Hybrid Machine Learning Approach: A Case Study of Lentil ( Lens culinaris Medik.)

Author

Listed:
  • Pankaj Das

    (ICAR-Indian Agricultural Statistics Research Institute, New Delhi 110012, India)

  • Girish Kumar Jha

    (ICAR-Indian Agricultural Research Institute, New Delhi 110012, India)

  • Achal Lama

    (ICAR-Indian Agricultural Statistics Research Institute, New Delhi 110012, India)

  • Rajender Parsad

    (ICAR-Indian Agricultural Statistics Research Institute, New Delhi 110012, India)

Abstract

This paper introduces a novel hybrid approach, combining machine learning algorithms with feature selection, for efficient modelling and forecasting of complex phenomenon governed by multifactorial and nonlinear behaviours, such as crop yield. We have attempted to harness the benefits of the soft computing algorithm multivariate adaptive regression spline (MARS) for feature selection coupled with support vector regression (SVR) and artificial neural network (ANN) for efficiently mapping the relationship between the predictors and predictand variables using the MARS-ANN and MARS-SVR hybrid frameworks. The performances of the algorithms are com-pared on different fit statistics such as RMSE, MAD, MAPE, etc., using numeric agronomic traits of 518 lentil genotypes to predict grain yield. The proposed MARS-based hybrid models outperformed individual models such as MARS, SVR and ANN. This is largely due to the enhanced feature ex-traction capability of the MARS model coupled with the nonlinear adaptive learning ability of ANN and SVR. The superiority of the proposed hybrid models MARS-ANN and MARS-SVM in terms of model building and generalisation ability was demonstrated.

Suggested Citation

  • Pankaj Das & Girish Kumar Jha & Achal Lama & Rajender Parsad, 2023. "Crop Yield Prediction Using Hybrid Machine Learning Approach: A Case Study of Lentil ( Lens culinaris Medik.)," Agriculture, MDPI, vol. 13(3), pages 1-13, February.
  • Handle: RePEc:gam:jagris:v:13:y:2023:i:3:p:596-:d:1084021
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2077-0472/13/3/596/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2077-0472/13/3/596/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Juan J. Cubillas & María I. Ramos & Juan M. Jurado & Francisco R. Feito, 2022. "A Machine Learning Model for Early Prediction of Crop Yield, Nested in a Web Application in the Cloud: A Case Study in an Olive Grove in Southern Spain," Agriculture, MDPI, vol. 12(9), pages 1-26, August.
    2. Diebold, Francis X & Mariano, Roberto S, 2002. "Comparing Predictive Accuracy," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(1), pages 134-144, January.
    3. Lee, Tian-Shyug & Chiu, Chih-Chou & Chou, Yu-Chao & Lu, Chi-Jie, 2006. "Mining the customer credit using classification and regression tree and multivariate adaptive regression splines," Computational Statistics & Data Analysis, Elsevier, vol. 50(4), pages 1113-1130, February.
    4. Zhonglin Ji & Yaozhong Pan & Xiufang Zhu & Dujuan Zhang & Jiajia Dai, 2022. "Prediction of Corn Yield in the USA Corn Belt Using Satellite Data and Machine Learning: From an Evapotranspiration Perspective," Agriculture, MDPI, vol. 12(8), pages 1-23, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xin Zhang & Xinwen Zeng & Yibo Wei & Wengang Zheng & Mingfei Wang, 2024. "A Non-Destructive Measurement Approach for the Internal Temperature of Shiitake Mushroom Sticks Based on a Data–Physics Hybrid-Driven Model," Agriculture, MDPI, vol. 14(10), pages 1-21, October.
    2. Sebastian C. Ibañez & Christopher P. Monterola, 2023. "A Global Forecasting Approach to Large-Scale Crop Production Prediction with Time Series Transformers," Agriculture, MDPI, vol. 13(9), pages 1-27, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shiyi Chen & Kiho Jeong & Wolfgang Härdle, 2015. "Recurrent support vector regression for a non-linear ARMA model with applications to forecasting financial returns," Computational Statistics, Springer, vol. 30(3), pages 821-843, September.
    2. Anatoly A. Peresetsky & Ruslan I. Yakubov, 2017. "Autocorrelation in an unobservable global trend: does it help to forecast market returns?," International Journal of Computational Economics and Econometrics, Inderscience Enterprises Ltd, vol. 7(1/2), pages 152-169.
    3. Kelly Burns & Imad Moosa, 2017. "Demystifying the Meese–Rogoff puzzle: structural breaks or measures of forecasting accuracy?," Applied Economics, Taylor & Francis Journals, vol. 49(48), pages 4897-4910, October.
    4. João C. Claudio & Katja Heinisch & Oliver Holtemöller, 2020. "Nowcasting East German GDP growth: a MIDAS approach," Empirical Economics, Springer, vol. 58(1), pages 29-54, January.
    5. Antonio Rubia & Trino-Manuel Ñíguez, 2006. "Forecasting the conditional covariance matrix of a portfolio under long-run temporal dependence," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 25(6), pages 439-458.
    6. Athanasopoulos, George & de Carvalho Guillén, Osmani Teixeira & Issler, João Victor & Vahid, Farshid, 2011. "Model selection, estimation and forecasting in VAR models with short-run and long-run restrictions," Journal of Econometrics, Elsevier, vol. 164(1), pages 116-129, September.
    7. Hao Chen & Qiulan Wan & Yurong Wang, 2014. "Refined Diebold-Mariano Test Methods for the Evaluation of Wind Power Forecasting Models," Energies, MDPI, vol. 7(7), pages 1-14, July.
    8. Antonello D’Agostino & Kieran Mcquinn & Karl Whelan, 2012. "Are Some Forecasters Really Better Than Others?," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 44(4), pages 715-732, June.
    9. Cavit Pakel & Neil Shephard & Kevin Sheppard, 2009. "Nuisance parameters, composite likelihoods and a panel of GARCH models," Economics Papers 2009-W12, Economics Group, Nuffield College, University of Oxford.
    10. Christophe Chorro & Florian Ielpo & Benoît Sévi, 2017. "The contribution of jumps to forecasting the density of returns," Post-Print halshs-01442618, HAL.
    11. Carlo Altavilla & Paul De Grauwe, 2010. "Forecasting and combining competing models of exchange rate determination," Applied Economics, Taylor & Francis Journals, vol. 42(27), pages 3455-3480.
    12. Matsumura, Marco & Moreira, Ajax & Vicente, José, 2011. "Forecasting the yield curve with linear factor models," International Review of Financial Analysis, Elsevier, vol. 20(5), pages 237-243.
    13. Carlo Altavilla & Raffaella Giacomini & Giuseppe Ragusa, 2017. "Anchoring the yield curve using survey expectations," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 32(6), pages 1055-1068, September.
    14. Gkillas, Konstantinos & Gupta, Rangan & Pierdzioch, Christian, 2020. "Forecasting realized oil-price volatility: The role of financial stress and asymmetric loss," Journal of International Money and Finance, Elsevier, vol. 104(C).
    15. Castro, Luciano de & Galvao, Antonio F. & Kim, Jeong Yeol & Montes-Rojas, Gabriel & Olmo, Jose, 2022. "Experiments on portfolio selection: A comparison between quantile preferences and expected utility decision models," Journal of Behavioral and Experimental Economics (formerly The Journal of Socio-Economics), Elsevier, vol. 97(C).
    16. Vitek, Francis, 2006. "Measuring the Stance of Monetary Policy in a Small Open Economy: A Dynamic Stochastic General Equilibrium Approach," MPRA Paper 802, University Library of Munich, Germany.
    17. Grace Lee Ching Yap, 2020. "Optimal Filter Approximations for Latent Long Memory Stochastic Volatility," Computational Economics, Springer;Society for Computational Economics, vol. 56(2), pages 547-568, August.
    18. Xiaojie Xu, 2017. "The rolling causal structure between the Chinese stock index and futures," Financial Markets and Portfolio Management, Springer;Swiss Society for Financial Market Research, vol. 31(4), pages 491-509, November.
    19. Xilong Chen & Eric Ghysels, 2011. "News--Good or Bad--and Its Impact on Volatility Predictions over Multiple Horizons," The Review of Financial Studies, Society for Financial Studies, vol. 24(1), pages 46-81, October.
    20. Faria, Gonçalo & Verona, Fabio, 2023. "Forecast combination in the frequency domain," Bank of Finland Research Discussion Papers 1/2023, Bank of Finland.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jagris:v:13:y:2023:i:3:p:596-:d:1084021. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.