IDEAS home Printed from https://ideas.repec.org/a/gam/jagris/v12y2022i7p980-d857662.html
   My bibliography  Save this article

Agricultural Vulnerability Assessment of High-Temperature Disaster in Shaanxi Province of China

Author

Listed:
  • Yining Ma

    (School of Environment, Northeast Normal University, Changchun 130024, China
    State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, Northeast Normal University, Changchun 130024, China
    Key Laboratory for Vegetation Ecology, Ministry of Education, Changchun 130024, China)

  • Suri Guga

    (School of Environment, Northeast Normal University, Changchun 130024, China
    State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, Northeast Normal University, Changchun 130024, China
    Key Laboratory for Vegetation Ecology, Ministry of Education, Changchun 130024, China)

  • Jie Xu

    (School of Environment, Northeast Normal University, Changchun 130024, China
    State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, Northeast Normal University, Changchun 130024, China
    Key Laboratory for Vegetation Ecology, Ministry of Education, Changchun 130024, China)

  • Yulin Su

    (School of Environment, Northeast Normal University, Changchun 130024, China
    State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, Northeast Normal University, Changchun 130024, China
    Key Laboratory for Vegetation Ecology, Ministry of Education, Changchun 130024, China)

  • Xingpeng Liu

    (School of Environment, Northeast Normal University, Changchun 130024, China
    State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, Northeast Normal University, Changchun 130024, China
    Key Laboratory for Vegetation Ecology, Ministry of Education, Changchun 130024, China)

  • Zhijun Tong

    (School of Environment, Northeast Normal University, Changchun 130024, China
    State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, Northeast Normal University, Changchun 130024, China
    Key Laboratory for Vegetation Ecology, Ministry of Education, Changchun 130024, China)

  • Jiquan Zhang

    (School of Environment, Northeast Normal University, Changchun 130024, China
    State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, Northeast Normal University, Changchun 130024, China
    Key Laboratory for Vegetation Ecology, Ministry of Education, Changchun 130024, China)

Abstract

The negative impact of high-temperature disaster on agricultural production is becoming more and more serious, and reducing the vulnerability to high-temperature disaster is fundamental to achieving sustainable agricultural development. This study is mainly focused on the vulnerability to agricultural high-temperature disaster in Shaanxi Province, China. Firstly, 15 indicators were selected from the perspectives of exposure, sensitivity, and adaptability. Secondly, the combined weighting method (Critic-G1 model) was used to determine the weight of each index. Based on the aforementioned procedures, the Kullback–Leibler (KL)-distance-improved TOPSIS model was utilized to evaluate the vulnerability. Lastly, the obstacle model was used to analyze the influencing factors and to make recommendations for disaster prevention and mitigation. The results show that: (1) The improved TOPSIS model was closer to the results of the synthetical index method. (2) The northern and southern area of Shaanxi is more vulnerable to high-temperature disaster, especially in Ankang and Tongchuan. Low values are distributed in the Guanzhong Plain. (3) Sensitivity is the biggest obstacle to reducing the vulnerability to high-temperature disaster. Among the influencing factors, the meteorological yield reduction coefficient of variation, multiple cropping index and per capita net income of rural residents of the obstacle are high. Decreasing sensitivity should be accompanied by increasing adaptability to improve regional disaster preparedness and mitigation. The results of this study can provide a basis for the development of agricultural high-temperature disaster mitigation and loss reduction strategies and provide new ideas for future research.

Suggested Citation

  • Yining Ma & Suri Guga & Jie Xu & Yulin Su & Xingpeng Liu & Zhijun Tong & Jiquan Zhang, 2022. "Agricultural Vulnerability Assessment of High-Temperature Disaster in Shaanxi Province of China," Agriculture, MDPI, vol. 12(7), pages 1-20, July.
  • Handle: RePEc:gam:jagris:v:12:y:2022:i:7:p:980-:d:857662
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2077-0472/12/7/980/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2077-0472/12/7/980/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Qunying Luo, 2011. "Temperature thresholds and crop production: a review," Climatic Change, Springer, vol. 109(3), pages 583-598, December.
    2. Ustaoglu, E. & Sisman, S. & Aydınoglu, A.C., 2021. "Determining agricultural suitable land in peri-urban geography using GIS and Multi Criteria Decision Analysis (MCDA) techniques," Ecological Modelling, Elsevier, vol. 455(C).
    3. Jeff Tollefson, 2021. "IPCC climate report: Earth is warmer than it’s been in 125,000 years," Nature, Nature, vol. 596(7871), pages 171-172, August.
    4. Nam, Won-Ho & Choi, Jin-Yong & Hong, Eun-Mi, 2015. "Irrigation vulnerability assessment on agricultural water supply risk for adaptive management of climate change in South Korea," Agricultural Water Management, Elsevier, vol. 152(C), pages 173-187.
    5. A. J. Challinor & A.-K. Koehler & J. Ramirez-Villegas & S. Whitfield & B. Das, 2016. "Current warming will reduce yields unless maize breeding and seed systems adapt immediately," Nature Climate Change, Nature, vol. 6(10), pages 954-958, October.
    6. Yang, Zitong & Huang, Xianfeng & Fang, Guohua & Ye, Jian & Lu, ChengXuan, 2021. "Benefit evaluation of East Route Project of South to North Water Transfer based on trapezoid cloud model," Agricultural Water Management, Elsevier, vol. 254(C).
    7. Eugenie L. Birch, 2014. "A Review of "Climate Change 2014: Impacts, Adaptation, and Vulnerability" and "Climate Change 2014: Mitigation of Climate Change"," Journal of the American Planning Association, Taylor & Francis Journals, vol. 80(2), pages 184-185, April.
    8. Shamsuddin Shahid & Houshang Behrawan, 2008. "Drought risk assessment in the western part of Bangladesh," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 46(3), pages 391-413, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Nannan Wang & Dengfeng Cui, 2023. "Impact of demonstration zone policy on agricultural science and technology innovation: evidence from China," Palgrave Communications, Palgrave Macmillan, vol. 10(1), pages 1-11, December.
    2. Yutong Duan & Miao Yu & Weiyang Sun & Shiyang Zhang & Yunyuan Li, 2024. "Spatial Vulnerability Assessment for Mountain Cities Based on the GA-BP Neural Network: A Case Study in Linzhou, Henan, China," Land, MDPI, vol. 13(6), pages 1-25, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rory G. J. Fitzpatrick & Douglas J. Parker & John H. Marsham & David P. Rowell & Lawrence S. Jackson & Declan Finney & Chetan Deva & Simon Tucker & Rachael Stratton, 2020. "How a typical West African day in the future-climate compares with current-climate conditions in a convection-permitting and parameterised convection climate model," Climatic Change, Springer, vol. 163(1), pages 267-296, November.
    2. Nam, Won-Ho & Hayes, Michael J. & Svoboda, Mark D. & Tadesse, Tsegaye & Wilhite, Donald A., 2015. "Drought hazard assessment in the context of climate change for South Korea," Agricultural Water Management, Elsevier, vol. 160(C), pages 106-117.
    3. Yining Ma & Suri Guga & Jie Xu & Jiquan Zhang & Zhijun Tong & Xingpeng Liu, 2021. "Comprehensive Risk Assessment of High Temperature Disaster to Kiwifruit in Shaanxi Province, China," IJERPH, MDPI, vol. 18(19), pages 1-22, October.
    4. Md Abdullah Salman & Faisal Ahmed, 2020. "Climatology In Barishal, Bangladesh: A Historical Analysis Of Temperature, Rainfall, Wind Speed And Relative Humidity Data," Malaysian Journal of Geosciences (MJG), Zibeline International Publishing, vol. 4(1), pages 43-53, September.
    5. Delpeuch, Claire & Leblois, Antoine, 2014. "The Elusive Quest for Supply Response to Cash-Crop Market Reforms in Sub-Saharan Africa: The Case of Cotton," World Development, Elsevier, vol. 64(C), pages 521-537.
    6. Mondol, Md Anarul Haque & Zhu, Xuan & Dunkerley, David & Henley, Benjamin J., 2021. "Observed meteorological drought trends in Bangladesh identified with the Effective Drought Index (EDI)," Agricultural Water Management, Elsevier, vol. 255(C).
    7. Matteo Zampieri & Andrea Toreti & Andrej Ceglar & Pierluca De Palma & Thomas Chatzopoulos, 2020. "Analysing the resilience of the European commodity production system with PyResPro, the Python Production Resilience package," Papers 2006.08976, arXiv.org, revised Jun 2020.
    8. Mei Cai & Yuanyuan Hong, 2022. "Improved TOPSIS Method Considering Fuzziness and Randomness in Multi-Attribute Group Decision Making," Mathematics, MDPI, vol. 10(22), pages 1-16, November.
    9. Golam Saleh Ahmed Salem & So Kazama & Shamsuddin Shahid & Nepal C. Dey, 2018. "Groundwater-dependent irrigation costs and benefits for adaptation to global change," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 23(6), pages 953-979, August.
    10. Hyungjin Shin & Gyumin Lee & Jaenam Lee & Sehoon Kim & Inhong Song, 2023. "Assessment of Agricultural Drought Vulnerability with Focus on Upland Fields and Identification of Primary Management Areas," Sustainability, MDPI, vol. 15(3), pages 1-16, February.
    11. Kamal Kumar Murari & Sandeep Mahato & T. Jayaraman & Madhura Swaminathan, 2018. "Extreme Temperatures and Crop Yields in Karnataka, India," Journal, Review of Agrarian Studies, vol. 8(2), pages 92-114, July-Dece.
    12. Amarasingha, R.P.R.K. & Suriyagoda, L.D.B. & Marambe, B. & Gaydon, D.S. & Galagedara, L.W. & Punyawardena, R. & Silva, G.L.L.P. & Nidumolu, U. & Howden, M., 2015. "Simulation of crop and water productivity for rice (Oryza sativa L.) using APSIM under diverse agro-climatic conditions and water management techniques in Sri Lanka," Agricultural Water Management, Elsevier, vol. 160(C), pages 132-143.
    13. Vladimir Marković & Imre Nagy & Andras Sik & Kinga Perge & Peter Laszlo & Maria Papathoma-Köhle & Catrin Promper & Thomas Glade, 2016. "Assessing drought and drought-related wildfire risk in Kanjiza, Serbia: the SEERISK methodology," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 80(2), pages 709-726, January.
    14. A. S. Giannikopoulou & F. K. Gad & E. Kampragou & D. Assimacopoulos, 2017. "Risk-Based Assessment of Drought Mitigation Options: the Case of Syros Island, Greece," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(2), pages 655-669, January.
    15. Jing Wang & Feng Fang & Qiang Zhang & Jinsong Wang & Yubi Yao & Wei Wang, 2016. "Risk evaluation of agricultural disaster impacts on food production in southern China by probability density method," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 83(3), pages 1605-1634, September.
    16. Aguilar-Gomez, Sandra & Gutierrez, Emilio & Heres, David & Jaume, David & Tobal, Martin, 2024. "Thermal stress and financial distress: Extreme temperatures and firms’ loan defaults in Mexico," Journal of Development Economics, Elsevier, vol. 168(C).
    17. Daniela Salite, 2019. "Explaining the uncertainty: understanding small-scale farmers’ cultural beliefs and reasoning of drought causes in Gaza Province, Southern Mozambique," Agriculture and Human Values, Springer;The Agriculture, Food, & Human Values Society (AFHVS), vol. 36(3), pages 427-441, September.
    18. Jun He & Xiao-Hua Yang & Jian-Qiang Li & Ju-Liang Jin & Yi-Ming Wei & Xiao-Juan Chen, 2015. "Spatiotemporal variation of meteorological droughts based on the daily comprehensive drought index in the Haihe River basin, China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 75(2), pages 199-217, February.
    19. Mevlut Uyan & Jarosław Janus & Ela Ertunç, 2023. "Land Use Suitability Model for Grapevine ( Vitis vinifera L.) Cultivation Using the Best Worst Method: A Case Study from Ankara/Türkiye," Agriculture, MDPI, vol. 13(9), pages 1-20, August.
    20. Roquia Salam & Abu Reza Md. Towfiqul Islam & Shakibul Islam, 2020. "Spatiotemporal distribution and prediction of groundwater level linked to ENSO teleconnection indices in the northwestern region of Bangladesh," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 22(5), pages 4509-4535, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jagris:v:12:y:2022:i:7:p:980-:d:857662. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.