IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v237y2024ipbs0960148124017191.html
   My bibliography  Save this article

Coordination of energy loss and fish friendliness for a low-head tubular-pump blade based on a multi-objective optimization model

Author

Listed:
  • Pan, Qiang
  • Wu, Yuehu
  • Zhang, Desheng
  • Shi, Weidong
  • van Esch, B.P.M.

Abstract

Tubular pumps and turbines are the water-to-electricity conversion devices widely used in pumped hydro storage systems for low heads and high flow rates. An ecological concern is the high proportion of fish injuries caused by the rotating blades. In this study, a tubular pump blade is retrofitted to balance the energy loss and fish friendliness through multi-objective optimization, combining computational fluid dynamics with a mathematical blade strike model. Sensitivity analysis identifies nine geometric variables out of thirteen for optimizing blade design. An approximation model is developed to implement optimization algorithm and achieve the objective function. By artificially assigning weights to targeted performance metrics, three scenarios are obtained: the optimal efficiency scheme (A), the optimal fish friendliness scheme (C) and the balanced scheme (B). Scheme C achieves a fish survival ratio of 100 % at multiple flow rates (for fish lengths of Lf/D=1/12), but results in a 6.4 % decrease in efficiency compared to scheme A. Additionally, a negative blade attack angle can improve flow pattern. Considerable reduction in fish mortality can be obtained by equipping the rotor with a larger size but lower shaft speed, while also limiting the fish size to pass through the pump running at a reduced flow rate.

Suggested Citation

  • Pan, Qiang & Wu, Yuehu & Zhang, Desheng & Shi, Weidong & van Esch, B.P.M., 2024. "Coordination of energy loss and fish friendliness for a low-head tubular-pump blade based on a multi-objective optimization model," Renewable Energy, Elsevier, vol. 237(PB).
  • Handle: RePEc:eee:renene:v:237:y:2024:i:pb:s0960148124017191
    DOI: 10.1016/j.renene.2024.121651
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148124017191
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2024.121651?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Qin, Yonglin & Li, Deyou & Wang, Hongjie & Liu, Zhansheng & Wei, Xianzhu & Wang, Xiaohang, 2022. "Multi-objective optimization design on high pressure side of a pump-turbine runner with high efficiency," Renewable Energy, Elsevier, vol. 190(C), pages 103-120.
    2. Fu, Tao & Deng, Zhiqun Daniel & Duncan, Joanne P. & Zhou, Daqing & Carlson, Thomas J. & Johnson, Gary E. & Hou, Hongfei, 2016. "Assessing hydraulic conditions through Francis turbines using an autonomous sensor device," Renewable Energy, Elsevier, vol. 99(C), pages 1244-1252.
    3. Rossington, Kate & Benson, Thomas, 2020. "An agent-based model to predict fish collisions with tidal stream turbines," Renewable Energy, Elsevier, vol. 151(C), pages 1220-1229.
    4. Çetin, Gürcan & Keçebaş, Ali, 2021. "Optimization of thermodynamic performance with simulated annealing algorithm: A geothermal power plant," Renewable Energy, Elsevier, vol. 172(C), pages 968-982.
    5. Sun, Longyue & Pan, Qiang & Zhang, Desheng & Zhao, Ruijie & Esch, B.P.M.(Bart) van, 2022. "Numerical study of the energy loss in the bulb tubular pump system focusing on the off-design conditions based on combined energy analysis methods," Energy, Elsevier, vol. 258(C).
    6. Zhu, Guojun & Guo, Yuxing & Feng, Jianjun & Gao, Luhan & Wu, Guangkuan & Luo, Xingqi, 2022. "Analysis and reduction of the pressure and shear damage probability of fish in a Francis turbine," Renewable Energy, Elsevier, vol. 199(C), pages 462-473.
    7. Hu, Zanao & Cheng, Yongguang & Liu, Demin & Chen, Hongyu & Ji, Bin & Ding, Jinghuan, 2023. "Broadening the operating range of pump-turbine to deep-part load by runner optimization," Renewable Energy, Elsevier, vol. 207(C), pages 73-88.
    8. Ye, Xuemin & Ding, Xueliang & Zhang, Jiankun & Li, Chunxi, 2017. "Numerical simulation of pressure pulsation and transient flow field in an axial flow fan," Energy, Elsevier, vol. 129(C), pages 185-200.
    9. Yang, Chunxia & Li, Qian & Hu, Xueyuan & Zheng, Yuan & Wu, Jiawei & Su, Shengzhi & Yu, An, 2023. "Fish injury analysis and flip-blade type optimization design of an undershot waterwheel," Renewable Energy, Elsevier, vol. 219(P1).
    10. Zhang, Liwen & Wang, Xin & Wu, Peng & Huang, Bin & Wu, Dazhuan, 2023. "Optimization of a centrifugal pump to improve hydraulic efficiency and reduce hydro-induced vibration," Energy, Elsevier, vol. 268(C).
    11. Zhou, Ling & Hang, Jianwei & Bai, Ling & Krzemianowski, Zbigniew & El-Emam, Mahmoud A. & Yasser, Eman & Agarwal, Ramesh, 2022. "Application of entropy production theory for energy losses and other investigation in pumps and turbines: A review," Applied Energy, Elsevier, vol. 318(C).
    12. Brown, Erik & Sulaeman, Samer & Quispe-Abad, Raul & Müller, Norbert & Moran, Emilio, 2023. "Safe passage for fish: The case for in-stream turbines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 173(C).
    13. Wu, TianXin & Wu, DengHao & Gao, ShuYu & Song, Yu & Ren, Yun & Mou, JieGang, 2023. "Multi-objective optimization and loss analysis of multistage centrifugal pumps," Energy, Elsevier, vol. 284(C).
    14. Yang, Zitong & Huang, Xianfeng & Fang, Guohua & Ye, Jian & Lu, ChengXuan, 2021. "Benefit evaluation of East Route Project of South to North Water Transfer based on trapezoid cloud model," Agricultural Water Management, Elsevier, vol. 254(C).
    15. Park, Jungsoo & Lee, Kyo Seung & Kim, Min Su & Jung, Dohoy, 2014. "Numerical analysis of a dual-fueled CI (compression ignition) engine using Latin hypercube sampling and multi-objective Pareto optimization," Energy, Elsevier, vol. 70(C), pages 278-287.
    16. Gan, Xingcheng & Pavesi, Giorgio & Pei, Ji & Yuan, Shouqi & Wang, Wenjie & Yin, Tingyun, 2022. "Parametric investigation and energy efficiency optimization of the curved inlet pipe with induced vane of an inline pump," Energy, Elsevier, vol. 240(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dehghan, Amir Arsalan & Shojaeefard, Mohammad Hassan & Roshanaei, Maryam, 2024. "Exploring a new criterion to determine the onset of cavitation in centrifugal pumps from energy-saving standpoint; experimental and numerical investigation," Energy, Elsevier, vol. 293(C).
    2. Yang, Gang & Shen, Xi & Shi, Lei & Zhang, Desheng & Zhao, Xutao & (Bart) van Esch, B.P.M., 2023. "Numerical investigation of hump characteristic improvement in a large vertical centrifugal pump with special emphasis on energy loss mechanism," Energy, Elsevier, vol. 273(C).
    3. Zhao, Jiantao & Pei, Ji & Wang, Wenjie & Gan, Xingcheng, 2024. "Blade redesign based on inverse design method for energy performance improvement and hydro-induced vibration suppression of a multi-stage centrifugal pump," Energy, Elsevier, vol. 308(C).
    4. Jiao, Weixuan & Chen, Hongjun & Cheng, Li & Zhang, Bowen & Gu, Yangdong, 2023. "Energy loss and pressure fluctuation characteristics of coastal two-way channel pumping stations under the ultra-low head condition," Energy, Elsevier, vol. 278(PA).
    5. Wang, Chaoyue & Wang, Benhong & Wang, Fujun & Wang, Hao & Hong, Yiping & Wu, Jie & Li, Dianji & Shao, Chunbing, 2024. "On the scale effect of energy conversion in large-scale bulb tubular pump: Characteristics, mechanisms and applications," Energy, Elsevier, vol. 292(C).
    6. Li, Wei & Pu, Wei & Ji, Leilei & Yang, Qiaoyue & He, Xinrui & Agarwal, Ramesh, 2024. "Mechanism of the impact of sediment particles on energy loss in mixed-flow pumps," Energy, Elsevier, vol. 304(C).
    7. Lei, Shuaihao & Cheng, Li & Sheng, Weigao, 2024. "Study on power losses and pressure fluctuations of diffuser mixed flow pump as turbine on different power generation speeds based on energy power models," Renewable Energy, Elsevier, vol. 237(PC).
    8. Yuan, Zhiyi & Zhang, Yongxue & Zhou, Wenbo & Zhang, Jinya & Zhu, Jianjun, 2024. "Optimization of a centrifugal pump with high efficiency and low noise based on fast prediction method and vortex control," Energy, Elsevier, vol. 289(C).
    9. Wang, Kaijie & Wang, Shuli & Meng, Puyu & Wang, Chengpeng & Li, Yuhai & Zheng, Wenxian & Liu, Jun & Kou, Jiawen, 2023. "Strategies employed in the design and optimization of pump as turbine runner," Renewable Energy, Elsevier, vol. 216(C).
    10. Hu, Zanao & Cheng, Yongguang & Chen, Hongyu & Liu, Demin & Ji, Bin & Wang, Zhiyuan & Zhang, Pengcheng & Xue, Song, 2024. "Predicting pump-turbine characteristic curves by theoretical models based on runner geometry parameters," Energy, Elsevier, vol. 301(C).
    11. Linda Vikström & Kjell Leonardsson & Johan Leander & Samuel Shry & Olle Calles & Gustav Hellström, 2020. "Validation of Francis–Kaplan Turbine Blade Strike Models for Adult and Juvenile Atlantic Salmon (Salmo Salar, L.) and Anadromous Brown Trout (Salmo Trutta, L.) Passing High Head Turbines," Sustainability, MDPI, vol. 12(16), pages 1-13, August.
    12. Mei Cai & Yuanyuan Hong, 2022. "Improved TOPSIS Method Considering Fuzziness and Randomness in Multi-Attribute Group Decision Making," Mathematics, MDPI, vol. 10(22), pages 1-16, November.
    13. Cho, Jungkeun & Park, Sangjun & Song, Soonho, 2019. "The effects of the air-fuel ratio on a stationary diesel engine under dual-fuel conditions and multi-objective optimization," Energy, Elsevier, vol. 187(C).
    14. Li, Lin & Lu, Bin & Xu, Weixin & Wang, Chengyan & Wu, Jiafeng & Tan, Dapeng, 2024. "Dynamic behaviors of multiphase vortex-induced vibration for hydropower energy conversion," Energy, Elsevier, vol. 308(C).
    15. Martinez, Jayson J. & Deng, Zhiqun Daniel & Mueller, Robert & Titzler, Scott, 2020. "In situ characterization of the biological performance of a Francis turbine retrofitted with a modular guide vane," Applied Energy, Elsevier, vol. 276(C).
    16. Lei Zhang & Liang Zhang & Qian Zhang & Kuan Jiang & Yuan Tie & Songling Wang, 2018. "Effects of the Second-Stage of Rotor with Single Abnormal Blade Angle on Rotating Stall of a Two-Stage Variable Pitch Axial Fan," Energies, MDPI, vol. 11(12), pages 1-18, November.
    17. Zhang, Shumei & Qiang, Jiaxi & Yang, Lin & Zhao, Xiaowei, 2016. "Prior-knowledge-independent equalization to improve battery uniformity with energy efficiency and time efficiency for lithium-ion battery," Energy, Elsevier, vol. 94(C), pages 1-12.
    18. Chen, Xiaoping & Zhang, Zhiguo & Huang, Jianmin & Zhou, Xiaojie & Zhu, Zuchao, 2024. "Numerical investigation on energy change field in a centrifugal pump as turbine under different flow rates," Renewable Energy, Elsevier, vol. 230(C).
    19. Chengshuo Wu & Jun Yang & Shuai Yang & Peng Wu & Bin Huang & Dazhuan Wu, 2023. "A Review of Fluid-Induced Excitations in Centrifugal Pumps," Mathematics, MDPI, vol. 11(4), pages 1-20, February.
    20. Shojaeefard, Mohammad Hassan & Saremian, Salman, 2023. "Studying the impact of impeller geometrical parameters on the high-efficiency working range of pump as turbine (PAT) installed in the water distribution network," Renewable Energy, Elsevier, vol. 216(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:237:y:2024:i:pb:s0960148124017191. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.