IDEAS home Printed from https://ideas.repec.org/a/gam/jagris/v12y2022i2p311-d754854.html
   My bibliography  Save this article

Effects of Shallow Groundwater Depth and Nitrogen Application Level on Soil Water and Nitrate Content, Growth and Yield of Winter Wheat

Author

Listed:
  • Yingjun She

    (Farmland Irrigation Research Institute, Chinese Academy of Agricultural Sciences, Xinxiang 453002, China
    Graduate School of Chinese Academy of Agricultural Sciences, Beijing 100081, China)

  • Ping Li

    (Farmland Irrigation Research Institute, Chinese Academy of Agricultural Sciences, Xinxiang 453002, China
    Water Environment Factor Risk Assessment Laboratory of Agricultural Products Quality and Safety, Ministry of Agriculture and Rural Affairs, Xinxiang 453002, China)

  • Xuebin Qi

    (Farmland Irrigation Research Institute, Chinese Academy of Agricultural Sciences, Xinxiang 453002, China
    Water Environment Factor Risk Assessment Laboratory of Agricultural Products Quality and Safety, Ministry of Agriculture and Rural Affairs, Xinxiang 453002, China)

  • Wei Guo

    (Farmland Irrigation Research Institute, Chinese Academy of Agricultural Sciences, Xinxiang 453002, China
    Water Environment Factor Risk Assessment Laboratory of Agricultural Products Quality and Safety, Ministry of Agriculture and Rural Affairs, Xinxiang 453002, China)

  • Shafeeq Ur Rahman

    (School of Environment and Civil Engineering, Dongguan University of Technology, Dongguan 523015, China
    MOE Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China)

  • Hongfei Lu

    (Farmland Irrigation Research Institute, Chinese Academy of Agricultural Sciences, Xinxiang 453002, China
    Water Environment Factor Risk Assessment Laboratory of Agricultural Products Quality and Safety, Ministry of Agriculture and Rural Affairs, Xinxiang 453002, China)

  • Cancan Ma

    (Farmland Irrigation Research Institute, Chinese Academy of Agricultural Sciences, Xinxiang 453002, China
    Graduate School of Chinese Academy of Agricultural Sciences, Beijing 100081, China)

  • Zhenjie Du

    (Farmland Irrigation Research Institute, Chinese Academy of Agricultural Sciences, Xinxiang 453002, China
    Water Environment Factor Risk Assessment Laboratory of Agricultural Products Quality and Safety, Ministry of Agriculture and Rural Affairs, Xinxiang 453002, China)

  • Jiaxin Cui

    (Farmland Irrigation Research Institute, Chinese Academy of Agricultural Sciences, Xinxiang 453002, China
    Graduate School of Chinese Academy of Agricultural Sciences, Beijing 100081, China)

  • Zhijie Liang

    (Farmland Irrigation Research Institute, Chinese Academy of Agricultural Sciences, Xinxiang 453002, China
    Water Environment Factor Risk Assessment Laboratory of Agricultural Products Quality and Safety, Ministry of Agriculture and Rural Affairs, Xinxiang 453002, China)

Abstract

The large amount of nitrogen application on the North China Plain has caused a serious negative impact on the sustainable development of regional agriculture and ecological environmental protection. Our aim was to explore the effects of nitrogen fertilization rate and groundwater depth on growth attributes, soil-water and soil-fertilizer contents, and the winter wheat yield. Experiments were carried out in micro-lysimeters at groundwater depths of 60, 90, 120, and 150 cm on the basis of 0, 150, 240, and 300 kg/ha nitrogen fertilization rates in the growth season for winter wheat. Results showed that plant height, leaf area index, soil plant analysis development, and yield without nitrogen application increased significantly with increases in groundwater depth. The optimal groundwater depths for growth attributes and yield were 60–120 cm and tended to be shallower with added nitrogen application. Soil moisture was lowered significantly with groundwater depth, adding a nitrogen application reduced soil moisture, and excessive nitrogen input intensified soil drought. Nitrate-N accumulation at the 120–150 cm depths was significantly higher than that at the 60–90 cm depths, and a 300 kg/ha (traditional nitrogen application rate) treatment was 6.7 times greater than that of 150 kg/ha treatment and increased by 74% more than that of the 240 kg/ha treatment at 60–150 cm depth. Compared with the yield of the 300 kg/ha rate, the yield of the 240 kg/ha rate had no significant difference, but the yield increased by 3.90% and 11.09% at the 120 cm and 150 cm depths. The growth attributes and yield of winter wheat were better, and the soil nitrate-N content was lower, when the nitrogen application rate was 240 kg/ha. Therefore, it can be concluded that nitrogen application can be reduced by 20% on the North China Plain.

Suggested Citation

  • Yingjun She & Ping Li & Xuebin Qi & Wei Guo & Shafeeq Ur Rahman & Hongfei Lu & Cancan Ma & Zhenjie Du & Jiaxin Cui & Zhijie Liang, 2022. "Effects of Shallow Groundwater Depth and Nitrogen Application Level on Soil Water and Nitrate Content, Growth and Yield of Winter Wheat," Agriculture, MDPI, vol. 12(2), pages 1-19, February.
  • Handle: RePEc:gam:jagris:v:12:y:2022:i:2:p:311-:d:754854
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2077-0472/12/2/311/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2077-0472/12/2/311/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. M. J. Ascott & D. C. Gooddy & L. Wang & M. E. Stuart & M. A. Lewis & R. S. Ward & A. M. Binley, 2017. "Global patterns of nitrate storage in the vadose zone," Nature Communications, Nature, vol. 8(1), pages 1-7, December.
    2. Zhenling Cui & Hongyan Zhang & Xinping Chen & Chaochun Zhang & Wenqi Ma & Chengdong Huang & Weifeng Zhang & Guohua Mi & Yuxin Miao & Xiaolin Li & Qiang Gao & Jianchang Yang & Zhaohui Wang & Youliang Y, 2018. "Pursuing sustainable productivity with millions of smallholder farmers," Nature, Nature, vol. 555(7696), pages 363-366, March.
    3. Zhang, Wenchao & Zhu, Jianqiang & Zhou, Xinguo & Li, Fahu, 2018. "Effects of shallow groundwater table and fertilization level on soil physico-chemical properties, enzyme activities, and winter wheat yield," Agricultural Water Management, Elsevier, vol. 208(C), pages 307-317.
    4. Si, Zhuanyun & Zain, Muhammad & Mehmood, Faisal & Wang, Guangshuai & Gao, Yang & Duan, Aiwang, 2020. "Effects of nitrogen application rate and irrigation regime on growth, yield, and water-nitrogen use efficiency of drip-irrigated winter wheat in the North China Plain," Agricultural Water Management, Elsevier, vol. 231(C).
    5. Xinping Chen & Zhenling Cui & Mingsheng Fan & Peter Vitousek & Ming Zhao & Wenqi Ma & Zhenlin Wang & Weijian Zhang & Xiaoyuan Yan & Jianchang Yang & Xiping Deng & Qiang Gao & Qiang Zhang & Shiwei Guo , 2014. "Producing more grain with lower environmental costs," Nature, Nature, vol. 514(7523), pages 486-489, October.
    6. Li, Guanghao & Zhao, Bin & Dong, Shuting & Zhang, Jiwang & Liu, Peng & Lu, Weiping, 2020. "Controlled-release urea combining with optimal irrigation improved grain yield, nitrogen uptake, and growth of maize," Agricultural Water Management, Elsevier, vol. 227(C).
    7. ChaoQing Yu & Xiao Huang & Han Chen & H. Charles J. Godfray & Jonathon S. Wright & Jim W. Hall & Peng Gong & ShaoQiang Ni & ShengChao Qiao & GuoRui Huang & YuChen Xiao & Jie Zhang & Zhao Feng & XiaoTa, 2019. "Managing nitrogen to restore water quality in China," Nature, Nature, vol. 567(7749), pages 516-520, March.
    8. Kahlown, M.A. & Ashraf, M. & Zia-ul-Haq, 2005. "Effect of shallow groundwater table on crop water requirements and crop yields," Agricultural Water Management, Elsevier, vol. 76(1), pages 24-35, July.
    9. Wang, Aihua & Gallardo, Marisa & Zhao, Wei & Zhang, Zhiping & Miao, Minmin, 2019. "Yield, nitrogen uptake and nitrogen leaching of tunnel greenhouse grown cucumber in a shallow groundwater region," Agricultural Water Management, Elsevier, vol. 217(C), pages 73-80.
    10. Gerhard Moitzi & Reinhard W. Neugschwandtner & Hans-Peter Kaul & Helmut Wagentristl, 2020. "Efficiency of Mineral Nitrogen Fertilization in Winter Wheat under Pannonian Climate Conditions," Agriculture, MDPI, vol. 10(11), pages 1-19, November.
    11. Mueller, Lothar & Behrendt, Axel & Schalitz, Gisbert & Schindler, Uwe, 2005. "Above ground biomass and water use efficiency of crops at shallow water tables in a temperate climate," Agricultural Water Management, Elsevier, vol. 75(2), pages 117-136, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Hongzhang & Ren, Hao & Zhang, Lihua & Zhao, Yali & Liu, Yuee & He, Qijin & Li, Geng & Han, Kun & Zhang, Jiwang & Zhao, Bin & Ren, Baizhao & Liu, Peng, 2023. "A sustainable approach to narrowing the summer maize yield gap experienced by smallholders in the North China Plain," Agricultural Systems, Elsevier, vol. 204(C).
    2. Lu, Jie & Bai, Zhaohai & Velthof, Gerard L. & Wu, Zhiguo & Chadwick, David & Ma, Lin, 2019. "Accumulation and leaching of nitrate in soils in wheat-maize production in China," Agricultural Water Management, Elsevier, vol. 212(C), pages 407-415.
    3. Zhang, Bangbang & Li, Xian & Chen, Haibin & Niu, Wenhao & Kong, Xiangbin & Yu, Qiang & Zhao, Minjuan & Xia, Xianli, 2022. "Identifying opportunities to close yield gaps in China by use of certificated cultivars to estimate potential productivity," Land Use Policy, Elsevier, vol. 117(C).
    4. Zhuang, Minghao & Liu, Yize & Yang, Yi & Zhang, Qingsong & Ying, Hao & Yin, Yulong & Cui, Zhenling, 2022. "The sustainability of staple crops in China can be substantially improved through localized strategies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 154(C).
    5. Wang, Linlin & Li, Lingling & Xie, Junhong & Luo, Zhuzhu & Sumera, Anwar & Zechariah, Effah & Fudjoe, Setor Kwami & Palta, Jairo A. & Chen, Yinglong, 2022. "Does plastic mulching reduce water footprint in field crops in China? A meta-analysis," Agricultural Water Management, Elsevier, vol. 260(C).
    6. Mengru Wang & Benjamin Leon Bodirsky & Rhodé Rijneveld & Felicitas Beier & Mirjam P. Bak & Masooma Batool & Bram Droppers & Alexander Popp & Michelle T. H. Vliet & Maryna Strokal, 2024. "A triple increase in global river basins with water scarcity due to future pollution," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    7. Bo Sun & Yongming Luo & Dianlin Yang & Jingsong Yang & Yuguo Zhao & Jiabao Zhang, 2023. "Coordinative Management of Soil Resources and Agricultural Farmland Environment for Food Security and Sustainable Development in China," IJERPH, MDPI, vol. 20(4), pages 1-16, February.
    8. Guo, Jinjin & Fan, Junliang & Xiang, Youzhen & Zhang, Fucang & Yan, Shicheng & Zhang, Xueyan & Zheng, Jing & Hou, Xianghao & Tang, Zijun & Li, Zhijun, 2022. "Maize leaf functional responses to blending urea and slow-release nitrogen fertilizer under various drip irrigation regimes," Agricultural Water Management, Elsevier, vol. 262(C).
    9. Shen, Hongzheng & Gao, Yunhe & Sun, Kexin & Gu, Yuhui & Ma, Xiaoyi, 2023. "Effects of differential irrigation and nitrogen reduction replacement on winter wheat yield and water productivity and nitrogen-use efficiency," Agricultural Water Management, Elsevier, vol. 282(C).
    10. Rong, Yao & Dai, Xiaoqin & Wang, Weishu & Wu, Peijin & Huo, Zailin, 2023. "Dependence of evapotranspiration validity on shallow groundwater in arid area-a three years field observation experiment," Agricultural Water Management, Elsevier, vol. 286(C).
    11. Gao, Xiaoyu & Huo, Zailin & Xu, Xu & Qu, Zhongyi & Huang, Guanhua & Tang, Pengcheng & Bai, Yining, 2018. "Shallow groundwater plays an important role in enhancing irrigation water productivity in an arid area: The perspective from a regional agricultural hydrology simulation," Agricultural Water Management, Elsevier, vol. 208(C), pages 43-58.
    12. Jun Li & Minglei Wang & Wenjiao Shi & Xiaoli Shi, 2024. "Halving Environmental Impacts of Diverse Crop Production in Fujian, China through Optimized Nitrogen Management," Agriculture, MDPI, vol. 14(9), pages 1-18, September.
    13. Shilei Cui & Yajuan Li & Xiaoqiang Jiao & Dong Zhang, 2022. "Hierarchical Linkage between the Basic Characteristics of Smallholders and Technology Awareness Determines Small-Holders’ Willingness to Adopt Green Production Technology," Agriculture, MDPI, vol. 12(8), pages 1-17, August.
    14. Qu, Ziren & Luo, Ning & Guo, Jiameng & Xu, Jie & Wang, Pu & Meng, Qingfeng, 2024. "Enhancing sustainability in the new variety-based low emergy system for maize production by nitrogen optimization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 199(C).
    15. Qiu, Weihong & Ma, Xiaolong & Cao, Hanbing & Huang, Tingmiao & She, Xu & Huang, Ming & Wang, Zhaohui & Liu, Jinshan, 2022. "Improving wheat yield by optimizing seeding and fertilizer rates based on precipitation in the summer fallow season in drylands of the Loess Plateau," Agricultural Water Management, Elsevier, vol. 264(C).
    16. Pan, Xiaofan & Zhang, Hengjia & Yu, Shouchao & Deng, Haoliang & Chen, Xietian & Zhou, Chenli & Li, Fuqiang, 2024. "Strategies for the management of water and nitrogen interaction in seed maize production; A case study from China Hexi Corridor Oasis Agricultural Area," Agricultural Water Management, Elsevier, vol. 292(C).
    17. Elsadek, Elsayed Ahmed & Zhang, Ke & Hamoud, Yousef Alhaj & Mousa, Ahmed & Awad, Ahmed & Abdallah, Mohammed & Shaghaleh, Hiba & Hamad, Amar Ali Adam & Jamil, Muhammad Tahir & Elbeltagi, Ahmed, 2024. "Impacts of climate change on rice yields in the Nile River Delta of Egypt: A large-scale projection analysis based on CMIP6," Agricultural Water Management, Elsevier, vol. 292(C).
    18. Xu, Zhuo & He, Ping & Yin, Xinyou & Huang, Qiuhong & Ding, Wencheng & Xu, Xinpeng & Struik, Paul C., 2023. "Can the advisory system Nutrient Expert® balance productivity, profitability and sustainability for rice production systems in China?," Agricultural Systems, Elsevier, vol. 205(C).
    19. Li, Jianzheng & Wang, Ligang & Luo, Zhongkui & Wang, Enli & Wang, Guocheng & Zhou, Han & Li, Hu & Xu, Shiwei, 2021. "Reducing N2O emissions while maintaining yield in a wheat–maize rotation system modelled by APSIM," Agricultural Systems, Elsevier, vol. 194(C).
    20. Liu, Lin & Yao, Shan & Zhang, Hongtao & Muhammed, Ayaz & Xu, Jiaxing & Li, Ruonan & Zhang, Dongjie & Zhang, Shulan & Yang, Xueyun, 2019. "Soil nitrate nitrogen buffer capacity and environmentally safe nitrogen rate for winter wheat-summer maize cropping in Northern China," Agricultural Water Management, Elsevier, vol. 213(C), pages 445-453.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jagris:v:12:y:2022:i:2:p:311-:d:754854. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.