IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v264y2022ics0378377422000361.html
   My bibliography  Save this article

Improving wheat yield by optimizing seeding and fertilizer rates based on precipitation in the summer fallow season in drylands of the Loess Plateau

Author

Listed:
  • Qiu, Weihong
  • Ma, Xiaolong
  • Cao, Hanbing
  • Huang, Tingmiao
  • She, Xu
  • Huang, Ming
  • Wang, Zhaohui
  • Liu, Jinshan

Abstract

Precipitation has been recognized as the dominant factor driving crop grain yields and large yield variations in drylands, which suggests that some agricultural management practices can be optimized to achieve high yields and benefits. In this study, we investigated 804 farmers' wheat fields from 2015 to 2018 in the dryland area of the Loess Plateau in China and analyzed the relationships between wheat yield and the influence factors (including precipitation, wheat sowing rate, fertilizer inputs, and soil nutrients) to propose optimized agricultural management practices for wheat production. The results showed that wheat grain yield followed a linear plateau pattern relative to the precipitation in the summer fallow season, with a yield of 5344 kg ha−1 obtained at a precipitation of 203 mm. In the L203 group (precipitation in the summer fallow season less than 203 mm), the Low-yield subgroup (0–33th in grain yield group (in order from low to high)) had a lower sowing rate, kernel weight, kernel number and spike number than the High-yield subgroup (68–100th in grain yield group); different levels of phosphorous (P) and potassium (K) fertilizer overuse were found among the three yield subgroups. However, in the H203 group (precipitation in the summer fallow season greater than 203 mm), differences in only kernel and spike numbers and nitrogen (N) fertilizer application rate were observed among the Low-, Moderate-, and High-yield subgroups. Additionally, there were no differences in the soil organic matter (SOM), total N or pH in the three subgroups in either L203 or H203, but significant differences in soil mineral N, available P and K were observed among the three subgroups (except mineral N in L203). Based on these results, the wheat sowing rate and fertilizer input rates can be optimized to increase wheat yield and farmers’ income and promote agricultural management for dryland wheat production on the Loess Plateau.

Suggested Citation

  • Qiu, Weihong & Ma, Xiaolong & Cao, Hanbing & Huang, Tingmiao & She, Xu & Huang, Ming & Wang, Zhaohui & Liu, Jinshan, 2022. "Improving wheat yield by optimizing seeding and fertilizer rates based on precipitation in the summer fallow season in drylands of the Loess Plateau," Agricultural Water Management, Elsevier, vol. 264(C).
  • Handle: RePEc:eee:agiwat:v:264:y:2022:i:c:s0378377422000361
    DOI: 10.1016/j.agwat.2022.107489
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377422000361
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2022.107489?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zhang, Shaohui & Wang, Haidong & Sun, Xin & Fan, Junliang & Zhang, Fucang & Zheng, Jing & Li, Yuepeng, 2021. "Effects of farming practices on yield and crop water productivity of wheat, maize and potato in China: A meta-analysis," Agricultural Water Management, Elsevier, vol. 243(C).
    2. Fulco Ludwig & Stephen Milroy & Senthold Asseng, 2009. "Impacts of recent climate change on wheat production systems in Western Australia," Climatic Change, Springer, vol. 92(3), pages 495-517, February.
    3. Puyu Feng & Bin Wang & De Li Liu & Hongtao Xing & Fei Ji & Ian Macadam & Hongyan Ruan & Qiang Yu, 2018. "Impacts of rainfall extremes on wheat yield in semi-arid cropping systems in eastern Australia," Climatic Change, Springer, vol. 147(3), pages 555-569, April.
    4. Rolla, Alfredo L. & Nuñez, Mario N. & Guevara, Edgardo R. & Meira, Santiago G. & Rodriguez, Gabriel R. & Ortiz de Zárate, Maria Inés, 2018. "Climate impacts on crop yields in Central Argentina. Adaptation strategies," Agricultural Systems, Elsevier, vol. 160(C), pages 44-59.
    5. Zhenling Cui & Hongyan Zhang & Xinping Chen & Chaochun Zhang & Wenqi Ma & Chengdong Huang & Weifeng Zhang & Guohua Mi & Yuxin Miao & Xiaolin Li & Qiang Gao & Jianchang Yang & Zhaohui Wang & Youliang Y, 2018. "Pursuing sustainable productivity with millions of smallholder farmers," Nature, Nature, vol. 555(7696), pages 363-366, March.
    6. Gastaldi, A. & Alvarez Prado, S. & Arduini, J.A. & Miralles, D.J., 2020. "Optimizing wheat (Triticum aestivum L.) management under dry environments: A case study in the West Pampas of Argentina," Agricultural Water Management, Elsevier, vol. 233(C).
    7. Deepak K. Ray & James S. Gerber & Graham K. MacDonald & Paul C. West, 2015. "Climate variation explains a third of global crop yield variability," Nature Communications, Nature, vol. 6(1), pages 1-9, May.
    8. Nathaniel D. Mueller & James S. Gerber & Matt Johnston & Deepak K. Ray & Navin Ramankutty & Jonathan A. Foley, 2012. "Closing yield gaps through nutrient and water management," Nature, Nature, vol. 490(7419), pages 254-257, October.
    9. Xinping Chen & Zhenling Cui & Mingsheng Fan & Peter Vitousek & Ming Zhao & Wenqi Ma & Zhenlin Wang & Weijian Zhang & Xiaoyuan Yan & Jianchang Yang & Xiping Deng & Qiang Gao & Qiang Zhang & Shiwei Guo , 2014. "Producing more grain with lower environmental costs," Nature, Nature, vol. 514(7523), pages 486-489, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhang, Yan & Qiang, Shengcai & Zhang, Guangxin & Sun, Min & Wen, Xiaoxia & Liao, Yuncheng & Gao, Zhiqiang, 2023. "Effects of ridge–furrow supplementary irrigation on water use efficiency and grain yield of winter wheat in Loess Plateau of China," Agricultural Water Management, Elsevier, vol. 289(C).
    2. Yang, Wenjie & Li, Yanhang & Jia, Bingli & Liu, Lei & Yuan, Aijing & Liu, Jinshan & Qiu, Weihong, 2024. "Optimized fertilization based on fallow season precipitation and the Nutrient Expert system for dryland wheat reduced environmental risks and increased economic benefits," Agricultural Water Management, Elsevier, vol. 291(C).
    3. Yang, Lei & Fang, Xiangyang & Zhou, Jie & Zhao, Jie & Hou, Xiqing & Yang, Yadong & Zang, Huadong & Zeng, Zhaohai, 2024. "Optimal irrigation for wheat-maize rotation depending on precipitation in the North China Plain: Evidence from a four-year experiment," Agricultural Water Management, Elsevier, vol. 294(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Bangbang & Li, Xian & Chen, Haibin & Niu, Wenhao & Kong, Xiangbin & Yu, Qiang & Zhao, Minjuan & Xia, Xianli, 2022. "Identifying opportunities to close yield gaps in China by use of certificated cultivars to estimate potential productivity," Land Use Policy, Elsevier, vol. 117(C).
    2. Shilei Cui & Yajuan Li & Xiaoqiang Jiao & Dong Zhang, 2022. "Hierarchical Linkage between the Basic Characteristics of Smallholders and Technology Awareness Determines Small-Holders’ Willingness to Adopt Green Production Technology," Agriculture, MDPI, vol. 12(8), pages 1-17, August.
    3. Wang, Hongzhang & Ren, Hao & Zhang, Lihua & Zhao, Yali & Liu, Yuee & He, Qijin & Li, Geng & Han, Kun & Zhang, Jiwang & Zhao, Bin & Ren, Baizhao & Liu, Peng, 2023. "A sustainable approach to narrowing the summer maize yield gap experienced by smallholders in the North China Plain," Agricultural Systems, Elsevier, vol. 204(C).
    4. Cao, Juan & Zhang, Zhao & Tao, Fulu & Chen, Yi & Luo, Xiangzhong & Xie, Jun, 2023. "Forecasting global crop yields based on El Nino Southern Oscillation early signals," Agricultural Systems, Elsevier, vol. 205(C).
    5. Lu, Jie & Bai, Zhaohai & Velthof, Gerard L. & Wu, Zhiguo & Chadwick, David & Ma, Lin, 2019. "Accumulation and leaching of nitrate in soils in wheat-maize production in China," Agricultural Water Management, Elsevier, vol. 212(C), pages 407-415.
    6. Zhuang, Minghao & Liu, Yize & Yang, Yi & Zhang, Qingsong & Ying, Hao & Yin, Yulong & Cui, Zhenling, 2022. "The sustainability of staple crops in China can be substantially improved through localized strategies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 154(C).
    7. Xiao, Xuechen & Zang, Hecang & Liu, Yang & Zhang, Zhen & Liu, Ying & Ejaz, Irsa & Du, Chenghang & Wang, Zhimin & Sun, Zhencai & Zhang, Yinghua, 2023. "Promoting winter wheat sustainable intensification by higher nitrogen distribution in top second to fourth leaves under water-restricted condition in North China Plain," Agricultural Water Management, Elsevier, vol. 289(C).
    8. Guo, Xiao-Xia & Li, Ke-Li & Liu, Yi-Ze & Zhuang, Ming-Hao & Wang, Chong, 2022. "Toward the economic-environmental sustainability of smallholder farming systems through judicious management strategies and optimized planting structures," Renewable and Sustainable Energy Reviews, Elsevier, vol. 165(C).
    9. Wang, Linlin & Li, Lingling & Xie, Junhong & Luo, Zhuzhu & Sumera, Anwar & Zechariah, Effah & Fudjoe, Setor Kwami & Palta, Jairo A. & Chen, Yinglong, 2022. "Does plastic mulching reduce water footprint in field crops in China? A meta-analysis," Agricultural Water Management, Elsevier, vol. 260(C).
    10. Dazhuan Ge & Hualou Long & Li Ma & Yingnan Zhang & Shuangshuang Tu, 2017. "Analysis Framework of China’s Grain Production System: A Spatial Resilience Perspective," Sustainability, MDPI, vol. 9(12), pages 1-21, December.
    11. Florian Schierhorn & Max Hofmann & Taras Gagalyuk & Igor Ostapchuk & Daniel Müller, 2021. "Machine learning reveals complex effects of climatic means and weather extremes on wheat yields during different plant developmental stages," Climatic Change, Springer, vol. 169(3), pages 1-19, December.
    12. Arata, Linda & Fabrizi, Enrico & Sckokai, Paolo, 2020. "A worldwide analysis of trend in crop yields and yield variability: Evidence from FAO data," Economic Modelling, Elsevier, vol. 90(C), pages 190-208.
    13. Li, Shuo & Wang, Shujuan & Shi, Jianglan & Tian, Xiaohong & Wu, Jiechen, 2022. "Economic, energy and environmental performance assessment on wheat production under water-saving cultivation strategies," Energy, Elsevier, vol. 261(PB).
    14. Bo Sun & Yongming Luo & Dianlin Yang & Jingsong Yang & Yuguo Zhao & Jiabao Zhang, 2023. "Coordinative Management of Soil Resources and Agricultural Farmland Environment for Food Security and Sustainable Development in China," IJERPH, MDPI, vol. 20(4), pages 1-16, February.
    15. Xiaochuang Cao & Birong Qin & Qingxu Ma & Lianfeng Zhu & Chunquan Zhu & Yali Kong & Wenhao Tian & Qianyu Jin & Junhua Zhang & Yijun Yu, 2023. "Predicting the Nitrogen Quota Application Rate in a Double Rice Cropping System Based on Rice–Soil Nitrogen Balance and 15 N Labelling Analysis," Agriculture, MDPI, vol. 13(3), pages 1-17, March.
    16. Katharina Waha & John Clarke & Kavina Dayal & Mandy Freund & Craig Heady & Irene Parisi & Elisabeth Vogel, 2022. "Past and future rainfall changes in the Australian midlatitudes and implications for agriculture," Climatic Change, Springer, vol. 170(3), pages 1-21, February.
    17. Qiao, Shengchao & Harrison, Sandy P. & Prentice, I. Colin & Wang, Han, 2023. "Optimality-based modelling of wheat sowing dates globally," Agricultural Systems, Elsevier, vol. 206(C).
    18. Li, Siyi & Wang, Bin & Feng, Puyu & Liu, De Li & Li, Linchao & Shi, Lijie & Yu, Qiang, 2022. "Assessing climate vulnerability of historical wheat yield in south-eastern Australia's wheat belt," Agricultural Systems, Elsevier, vol. 196(C).
    19. Qiu, Bingwen & Jian, Zeyu & Yang, Peng & Tang, Zhenghong & Zhu, Xiaolin & Duan, Mingjie & Yu, Qiangyi & Chen, Xuehong & Zhang, Miao & Tu, Ping & Xu, Weiming & Zhao, Zhiyuan, 2024. "Unveiling grain production patterns in China (2005–2020) towards targeted sustainable intensification," Agricultural Systems, Elsevier, vol. 216(C).
    20. Zhang, He & Tao, Fulu & Zhou, Guangsheng, 2019. "Potential yields, yield gaps, and optimal agronomic management practices for rice production systems in different regions of China," Agricultural Systems, Elsevier, vol. 171(C), pages 100-112.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:264:y:2022:i:c:s0378377422000361. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.