IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v8y2017i1d10.1038_s41467-017-01321-w.html
   My bibliography  Save this article

Global patterns of nitrate storage in the vadose zone

Author

Listed:
  • M. J. Ascott

    (British Geological Survey)

  • D. C. Gooddy

    (British Geological Survey)

  • L. Wang

    (British Geological Survey, Environmental Science Centre)

  • M. E. Stuart

    (British Geological Survey)

  • M. A. Lewis

    (British Geological Survey)

  • R. S. Ward

    (British Geological Survey, Environmental Science Centre)

  • A. M. Binley

    (Lancaster Environment Centre, Lancaster University)

Abstract

Global-scale nitrogen budgets developed to quantify anthropogenic impacts on the nitrogen cycle do not explicitly consider nitrate stored in the vadose zone. Here we show that the vadose zone is an important store of nitrate that should be considered in future budgets for effective policymaking. Using estimates of groundwater depth and nitrate leaching for 1900–2000, we quantify the peak global storage of nitrate in the vadose zone as 605–1814 Teragrams (Tg). Estimates of nitrate storage are validated using basin-scale and national-scale estimates and observed groundwater nitrate data. Nitrate storage per unit area is greatest in North America, China and Europe where there are thick vadose zones and extensive historical agriculture. In these areas, long travel times in the vadose zone may delay the impact of changes in agricultural practices on groundwater quality. We argue that in these areas use of conventional nitrogen budget approaches is inappropriate.

Suggested Citation

  • M. J. Ascott & D. C. Gooddy & L. Wang & M. E. Stuart & M. A. Lewis & R. S. Ward & A. M. Binley, 2017. "Global patterns of nitrate storage in the vadose zone," Nature Communications, Nature, vol. 8(1), pages 1-7, December.
  • Handle: RePEc:nat:natcom:v:8:y:2017:i:1:d:10.1038_s41467-017-01321-w
    DOI: 10.1038/s41467-017-01321-w
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-017-01321-w
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-017-01321-w?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xiaochen Liu & Arthur H. W. Beusen & Hans J. M. Grinsven & Junjie Wang & Wim Joost Hoek & Xiangbin Ran & José M. Mogollón & Alexander F. Bouwman, 2024. "Impact of groundwater nitrogen legacy on water quality," Nature Sustainability, Nature, vol. 7(7), pages 891-900, July.
    2. Gao, Jingbo & Li, Zhiqin & Chen, Zhujun & Zhou, Yang & Liu, Weiguo & Wang, Lei & Zhou, Jianbin, 2021. "Deterioration of groundwater quality along an increasing intensive land use pattern in a small catchment," Agricultural Water Management, Elsevier, vol. 253(C).
    3. Pinardi, Monica & Soana, Elisa & Severini, Edoardo & Racchetti, Erica & Celico, Fulvio & Bartoli, Marco, 2022. "Agricultural practices regulate the seasonality of groundwater-river nitrogen exchanges," Agricultural Water Management, Elsevier, vol. 273(C).
    4. Wang, Jingjing, 2022. "Harnessing natural attenuation to reduce CAFOs nitrate emissions: An integrated modeling approach," Ecological Economics, Elsevier, vol. 199(C).
    5. Severini, Edoardo & Magri, Monia & Soana, Elisa & Bartoli, Marco & Faggioli, Marco & Celico, Fulvio, 2023. "Irrigation practices affect relationship between reduced nitrogen fertilizer use and improvement of river and groundwater chemistry," Agricultural Water Management, Elsevier, vol. 289(C).
    6. Qiaona Guo & Zhifang Zhou & Guojiao Huang & Zhi Dou, 2019. "Variations of Groundwater Quality in the Multi-Layered Aquifer System near the Luanhe River, China," Sustainability, MDPI, vol. 11(4), pages 1-19, February.
    7. Yingjun She & Ping Li & Xuebin Qi & Wei Guo & Shafeeq Ur Rahman & Hongfei Lu & Cancan Ma & Zhenjie Du & Jiaxin Cui & Zhijie Liang, 2022. "Effects of Shallow Groundwater Depth and Nitrogen Application Level on Soil Water and Nitrate Content, Growth and Yield of Winter Wheat," Agriculture, MDPI, vol. 12(2), pages 1-19, February.
    8. Mengru Wang & Benjamin Leon Bodirsky & Rhodé Rijneveld & Felicitas Beier & Mirjam P. Bak & Masooma Batool & Bram Droppers & Alexander Popp & Michelle T. H. Vliet & Maryna Strokal, 2024. "A triple increase in global river basins with water scarcity due to future pollution," Nature Communications, Nature, vol. 15(1), pages 1-13, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:8:y:2017:i:1:d:10.1038_s41467-017-01321-w. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.