IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v301y2024ics0378377424002683.html
   My bibliography  Save this article

Quantifying the impacts of varying groundwater table depths on cotton evapotranspiration, yield, water use efficiency, and root zone salinity using lysimeters

Author

Listed:
  • Gul, Nazar
  • Mangrio, Munir Ahmed
  • Shaikh, Irfan Ahmed
  • Siyal, Abdul Ghafoor
  • Taie Semiromi, Majid

Abstract

Determining the evapotranspiration (ET) of cotton as a water-intensive crop is crucial for effective irrigation planning and water management, especially in regions like Sindh province, Pakistan, where shallow groundwater table depths (WTDs) are prevalent. Despite the importance of cotton, a major cash crop in Sindh, previous studies on ET were conducted decades ago and may no longer be reliable due to ongoing climate change and the introduction of new crop varieties. Thus, we quantified cotton ET across two cropping seasons and at various WTDs (0.45, 0.60, 0.75, 1.50, 2.25, and 2.75 m). The experimental study was based on the data procured from 12 mini lysimeters and 12 large lysimeters for two years (2018 and 2019) and at two soil series. The findings revealed that cotton ET ranged from 1332 to 1437, 1114–1202, 988–1075, 781–821, 690–733, and 637–683 mm at WTDs of 0.45, 0.60, 0.75, 1.50, 2.25, and 2.75 m, respectively. WTDs from 0.45 to 0.75 m fulfilled 94–96 % of cotton ET through groundwater (GW) contribution in Sultanpur soil (silt loam) and 93–97 % in Miani soil (silty clay loam). At 1.50–2.75 m WTDs, irrigation water requirements (excluding rainfall and leaching) were 63–88 % in Sultanpur soil and 67–89 % in Miani soil. The highest yield was observed at a 1.50 m WTD, while the highest water use efficiency was identified at a 2.25 m WTD. However, soil salinity increased by 60–80 %, resulting in a 40–60 % lower cotton yield at 0.45–0.75 m WTD. Therefore, periodic flushing of salts is necessary to utilize shallow WTDs effectively. Considering GW contribution to ET when allocating water for irrigation channels and devising irrigation schedules is crucial. This approach can lead to water savings, prevent land from becoming waterlogged and saline, manage the groundwater table, and reduce the need for drainage channels and labor force for their preparation.

Suggested Citation

  • Gul, Nazar & Mangrio, Munir Ahmed & Shaikh, Irfan Ahmed & Siyal, Abdul Ghafoor & Taie Semiromi, Majid, 2024. "Quantifying the impacts of varying groundwater table depths on cotton evapotranspiration, yield, water use efficiency, and root zone salinity using lysimeters," Agricultural Water Management, Elsevier, vol. 301(C).
  • Handle: RePEc:eee:agiwat:v:301:y:2024:i:c:s0378377424002683
    DOI: 10.1016/j.agwat.2024.108933
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377424002683
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2024.108933?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yingjun She & Ping Li & Xuebin Qi & Wei Guo & Shafeeq Ur Rahman & Hongfei Lu & Cancan Ma & Zhenjie Du & Jiaxin Cui & Zhijie Liang, 2022. "Effects of Shallow Groundwater Depth and Nitrogen Application Level on Soil Water and Nitrate Content, Growth and Yield of Winter Wheat," Agriculture, MDPI, vol. 12(2), pages 1-19, February.
    2. Kahlown, M.A. & Ashraf, M. & Zia-ul-Haq, 2005. "Effect of shallow groundwater table on crop water requirements and crop yields," Agricultural Water Management, Elsevier, vol. 76(1), pages 24-35, July.
    3. Gowing, J.W. & Rose, D.A. & Ghamarnia, H., 2009. "The effect of salinity on water productivity of wheat under deficit irrigation above shallow groundwater," Agricultural Water Management, Elsevier, vol. 96(3), pages 517-524, March.
    4. Northey, J.E. & Christen, E.W. & Ayars, J.E. & Jankowski, J., 2006. "Occurrence and measurement of salinity stratification in shallow groundwater in the Murrumbidgee Irrigation Area, south-eastern Australia," Agricultural Water Management, Elsevier, vol. 81(1-2), pages 23-40, March.
    5. Karimov, Akmal Kh. & Šimůnek, Jirka & Hanjra, Munir A. & Avliyakulov, Mirzaolim & Forkutsa, Irina, 2014. "Effects of the shallow water table on water use of winter wheat and ecosystem health: Implications for unlocking the potential of groundwater in the Fergana Valley (Central Asia)," Agricultural Water Management, Elsevier, vol. 131(C), pages 57-69.
    6. Xu, Xu & Huang, Guanhua & Sun, Chen & Pereira, Luis S. & Ramos, Tiago B. & Huang, Quanzhong & Hao, Yuanyuan, 2013. "Assessing the effects of water table depth on water use, soil salinity and wheat yield: Searching for a target depth for irrigated areas in the upper Yellow River basin," Agricultural Water Management, Elsevier, vol. 125(C), pages 46-60.
    7. Bandyopadhyay, P. K. & Mallick, S., 2003. "Actual evapotranspiration and crop coefficients of wheat (Triticum aestivum) under varying moisture levels of humid tropical canal command area," Agricultural Water Management, Elsevier, vol. 59(1), pages 33-47, March.
    8. Ketema Tezera & Gobena Dirirsa & Tilahun Hordofa, 2019. "Determination of Wheat (Triticum Aestivum L) Seasonal Water Demand and Crop Coefficient for Effective Irrigation Water Planning and Management in Semi-Arid, Central Rift Valley of Ethiopia," International Journal of Environmental Sciences & Natural Resources, Juniper Publishers Inc., vol. 21(1), pages 30-35, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Liu, Meihan & Paredes, Paula & Shi, Haibin & Ramos, Tiago B. & Dou, Xu & Dai, Liping & Pereira, Luis S., 2022. "Impacts of a shallow saline water table on maize evapotranspiration and groundwater contribution using static water table lysimeters and the dual Kc water balance model SIMDualKc," Agricultural Water Management, Elsevier, vol. 273(C).
    2. Talebnejad, R. & Sepaskhah, A.R., 2015. "Effect of deficit irrigation and different saline groundwater depths on yield and water productivity of quinoa," Agricultural Water Management, Elsevier, vol. 159(C), pages 225-238.
    3. Ren, Dongyang & Xu, Xu & Engel, Bernard & Huang, Quanzhong & Xiong, Yunwu & Huo, Zailin & Huang, Guanhua, 2019. "Hydrological complexities in irrigated agro-ecosystems with fragmented land cover types and shallow groundwater: Insights from a distributed hydrological modeling method," Agricultural Water Management, Elsevier, vol. 213(C), pages 868-881.
    4. Wu, Yao & Liu, Tingxi & Paredes, Paula & Duan, Limin & Pereira, Luis S., 2015. "Water use by a groundwater dependent maize in a semi-arid region of Inner Mongolia: Evapotranspiration partitioning and capillary rise," Agricultural Water Management, Elsevier, vol. 152(C), pages 222-232.
    5. Zhao, Tianxing & Zhu, Yan & Ye, Ming & Yang, Jinzhong & Jia, Biao & Mao, Wei & Wu, Jingwei, 2022. "A new approach for estimating spatial-temporal phreatic evapotranspiration at a regional scale using NDVI and water table depth measurements," Agricultural Water Management, Elsevier, vol. 264(C).
    6. Gao, Xiaoyu & Bai, Yining & Huo, Zailin & Xu, Xu & Huang, Guanhua & Xia, Yuhong & Steenhuis, Tammo S., 2017. "Deficit irrigation enhances contribution of shallow groundwater to crop water consumption in arid area," Agricultural Water Management, Elsevier, vol. 185(C), pages 116-125.
    7. Xiong, Lvyang & Xu, Xu & Engel, Bernard & Xiong, Yunwu & Huang, Quanzhong & Huang, Guanhua, 2021. "Predicting agroecosystem responses to identify appropriate water-saving management in arid irrigated regions with shallow groundwater: Realization on a regional scale," Agricultural Water Management, Elsevier, vol. 247(C).
    8. Benedykt Pepliński & Wawrzyniec Czubak, 2021. "The Influence of Opencast Lignite Mining Dehydration on Plant Production—A Methodological Study," Energies, MDPI, vol. 14(7), pages 1-29, March.
    9. Fazlullah Akhtar & Bernhard Tischbein & Usman Awan, 2013. "Optimizing Deficit Irrigation Scheduling Under Shallow Groundwater Conditions in Lower Reaches of Amu Darya River Basin," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(8), pages 3165-3178, June.
    10. Xie, Tao & Liu, Xinhui & Sun, Tao, 2011. "The effects of groundwater table and flood irrigation strategies on soil water and salt dynamics and reed water use in the Yellow River Delta, China," Ecological Modelling, Elsevier, vol. 222(2), pages 241-252.
    11. Rong, Yao & Dai, Xiaoqin & Wang, Weishu & Wu, Peijin & Huo, Zailin, 2023. "Dependence of evapotranspiration validity on shallow groundwater in arid area-a three years field observation experiment," Agricultural Water Management, Elsevier, vol. 286(C).
    12. Gao, Xiaoyu & Huo, Zailin & Xu, Xu & Qu, Zhongyi & Huang, Guanhua & Tang, Pengcheng & Bai, Yining, 2018. "Shallow groundwater plays an important role in enhancing irrigation water productivity in an arid area: The perspective from a regional agricultural hydrology simulation," Agricultural Water Management, Elsevier, vol. 208(C), pages 43-58.
    13. Ren, Dongyang & Xu, Xu & Engel, Bernard & Huang, Guanhua, 2018. "Growth responses of crops and natural vegetation to irrigation and water table changes in an agro-ecosystem of Hetao, upper Yellow River basin: Scenario analysis on maize, sunflower, watermelon and ta," Agricultural Water Management, Elsevier, vol. 199(C), pages 93-104.
    14. Ibrakhimov, Mirzakhayot & Awan, Usman Khalid & George, Biju & Liaqat, Umar Waqas, 2018. "Understanding surface water–groundwater interactions for managing large irrigation schemes in the multi-country Fergana valley, Central Asia," Agricultural Water Management, Elsevier, vol. 201(C), pages 99-106.
    15. Benedykt Pepliński, 2021. "External Costs for Agriculture from Lignite Extraction from the Złoczew Deposit," Energies, MDPI, vol. 14(9), pages 1-27, May.
    16. Guoshuai Wang & Bing Xu & Pengcheng Tang & Haibin Shi & Delong Tian & Chen Zhang & Jie Ren & Zekun Li, 2022. "Modeling and Evaluating Soil Salt and Water Transport in a Cultivated Land–Wasteland–Lake System of Hetao, Yellow River Basin’s Upper Reaches," Sustainability, MDPI, vol. 14(21), pages 1-23, November.
    17. Chen, Shuai & Mao, Xiaomin & Shang, Songhao, 2022. "Response and contribution of shallow groundwater to soil water/salt budget and crop growth in layered soils," Agricultural Water Management, Elsevier, vol. 266(C).
    18. Lai, Jianbin & Liu, Tiegang & Luo, Yi, 2022. "Evapotranspiration partitioning for winter wheat with shallow groundwater in the lower reach of the Yellow River Basin," Agricultural Water Management, Elsevier, vol. 266(C).
    19. Ghamarnia, Houshang & Khodaei, Erfan, 2016. "Evidence on shallow groundwater use by edible green vegetables such as Solanum pseudoca psicum, Ocimum basilicum and Lepidium sativum in a semi-arid climate condition," Agricultural Water Management, Elsevier, vol. 165(C), pages 198-210.
    20. Benedykt Pepliński, 2023. "External Costs to Agriculture Associated with Further Open Pit Lignite Mining from the Bełchatów Deposit," Energies, MDPI, vol. 16(12), pages 1-20, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:301:y:2024:i:c:s0378377424002683. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.