IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v227y2020ics0378377419301064.html
   My bibliography  Save this article

Controlled-release urea combining with optimal irrigation improved grain yield, nitrogen uptake, and growth of maize

Author

Listed:
  • Li, Guanghao
  • Zhao, Bin
  • Dong, Shuting
  • Zhang, Jiwang
  • Liu, Peng
  • Lu, Weiping

Abstract

Effective irrigation and nitrogen (N) management is crucial for sustainable agricultural development. Controlled-release fertilizer has been widely used to improve N use efficiency and save labor in one-off application. A specially designed soil column and field trial were conducted to investigate the effect of the interaction of irrigation management and nitrogen on yield, N uptake, and photosynthetic characteristics of summer maize. In the soil column experiment, severe water stress (W1) significantly decreased the leaf area index, relative chlorophyll content, and net photosynthesis and delayed maize growth, resulting in significant yield loss. Under mild water stress (W2), increased controlled-release urea (CRN) application counteracted the inhibition of maize growth. Under adequate water condition (W3), the yield and maize growth exhibited no significant difference between CRN 210 and 315 kg N ha–1. In the field experiment, CRN 210 and 315 kg N ha–1 also exhibited similar yield and were significantly higher than common urea 315 kg N ha–1 under conventional irrigation (CI). Under half-reduced conventional irrigation (RI), yields of CRN 315 kg N ha–1 increased by 10.5% and 7.5% compared with that of CRN 210 kg N ha–1 in 2014 and 2015. The interaction between irrigation and CRN could effectively alleviate the adverse effects of mild drought on summer maize by delaying leaf senescence, increasing chlorophyll content, and improving photosynthetic performance during the grain-filling period. These characteristics allowed more water and nutrients for maize plant and ultimately increased the yield. In areas with adequate irrigation conditions, CRN reduced to 210 kg N ha–1 could satisfy maize growth. In mild water stress and half-reduced conventional irrigation area, the CRN rate of 315 kg N ha–1 used by traditional farmers showed superior benefits.

Suggested Citation

  • Li, Guanghao & Zhao, Bin & Dong, Shuting & Zhang, Jiwang & Liu, Peng & Lu, Weiping, 2020. "Controlled-release urea combining with optimal irrigation improved grain yield, nitrogen uptake, and growth of maize," Agricultural Water Management, Elsevier, vol. 227(C).
  • Handle: RePEc:eee:agiwat:v:227:y:2020:i:c:s0378377419301064
    DOI: 10.1016/j.agwat.2019.105834
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377419301064
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2019.105834?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jia, Xucun & Shao, Lijie & Liu, Peng & Zhao, Bingqiang & Gu, Limin & Dong, Shuting & Bing, So Hwat & Zhang, Jiwang & Zhao, Bin, 2014. "Effect of different nitrogen and irrigation treatments on yield and nitrate leaching of summer maize (Zea mays L.) under lysimeter conditions," Agricultural Water Management, Elsevier, vol. 137(C), pages 92-103.
    2. Gheysari, Mahdi & Mirlatifi, Seyed Majid & Bannayan, Mohammad & Homaee, Mehdi & Hoogenboom, Gerrit, 2009. "Interaction of water and nitrogen on maize grown for silage," Agricultural Water Management, Elsevier, vol. 96(5), pages 809-821, May.
    3. Adamtey, Noah & Cofie, Olufunke & Ofosu-Budu, K.G. & Ofosu-Anim, J. & Laryea, K.B. & Forster, Dionys, 2010. "Effect of N-enriched co-compost on transpiration efficiency and water-use efficiency of maize (Zea mays L.) under controlled irrigation," Agricultural Water Management, Elsevier, vol. 97(7), pages 995-1005, July.
    4. Chilundo, Mario & Joel, Abraham & Wesström, Ingrid & Brito, Rui & Messing, Ingmar, 2016. "Effects of reduced irrigation dose and slow release fertiliser on nitrogen use efficiency and crop yield in a semi-arid loamy sand," Agricultural Water Management, Elsevier, vol. 168(C), pages 68-77.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Qiang, Shengcai & Zhang, Yan & Zhao, Hong & Fan, Junliang & Zhang, Fucang & Sun, Min & Gao, Zhiqiang, 2022. "Combined effects of urea type and placement depth on grain yield, water productivity and nitrogen use efficiency of rain-fed spring maize in northern China," Agricultural Water Management, Elsevier, vol. 262(C).
    2. Lei Wang & Baizhao Ren & Bin Zhao & Peng Liu & Jiwang Zhang, 2022. "Comparative Yield and Photosynthetic Characteristics of Two Corn ( Zea mays L.) Hybrids Differing in Maturity under Different Irrigation Treatments," Agriculture, MDPI, vol. 12(3), pages 1-16, March.
    3. Gheysari, Mahdi & Pirnajmedin, Fatemeh & Movahedrad, Hamid & Majidi, Mohammad Mahdi & Zareian, Mohammad Javad, 2021. "Crop yield and irrigation water productivity of silage maize under two water stress strategies in semi-arid environment: Two different pot and field experiments," Agricultural Water Management, Elsevier, vol. 255(C).
    4. Liu, Yu & Li, Shilei & Liu, Yanxin & Shen, Hongzheng & Huang, Tingting & Ma, Xiaoyi, 2023. "Optimization of a nitrogen fertilizer application scheme for spring maize in full-film double-ridge furrow in Longzhong, China," Agricultural Water Management, Elsevier, vol. 290(C).
    5. Shen, Hongzheng & Gao, Yunhe & Sun, Kexin & Gu, Yuhui & Ma, Xiaoyi, 2023. "Effects of differential irrigation and nitrogen reduction replacement on winter wheat yield and water productivity and nitrogen-use efficiency," Agricultural Water Management, Elsevier, vol. 282(C).
    6. Qiang, Shengcai & Zhang, Yan & Fan, Junliang & Zhang, Fucang & Sun, Min & Gao, Zhiqiang, 2022. "Combined effects of ridge–furrow ratio and urea type on grain yield and water productivity of rainfed winter wheat on the Loess Plateau of China," Agricultural Water Management, Elsevier, vol. 261(C).
    7. Qi, Dongliang & Pan, Chen, 2022. "Responses of shoot biomass accumulation, distribution, and nitrogen use efficiency of maize to nitrogen application rates under waterlogging," Agricultural Water Management, Elsevier, vol. 261(C).
    8. Wang, Ning & Zhang, Tonghui & Cong, Anqi & Lian, Jie, 2023. "Integrated application of fertilization and reduced irrigation improved maize (Zea mays L.) yield, crop water productivity and nitrogen use efficiency in a semi-arid region," Agricultural Water Management, Elsevier, vol. 289(C).
    9. Pan, Xiaofan & Zhang, Hengjia & Yu, Shouchao & Deng, Haoliang & Chen, Xietian & Zhou, Chenli & Li, Fuqiang, 2024. "Strategies for the management of water and nitrogen interaction in seed maize production; A case study from China Hexi Corridor Oasis Agricultural Area," Agricultural Water Management, Elsevier, vol. 292(C).
    10. Xia, Guimin & Wang, Yujia & Hu, Jiaqi & Wang, Shujun & Zhang, Yan & Wu, Qi & Chi, Daocai, 2021. "Effects of Supplemental Irrigation on Water and Nitrogen Use, Yield, and Kernel Quality of Peanut under Nitrogen-Supplied Conditions," Agricultural Water Management, Elsevier, vol. 243(C).
    11. Yingjun She & Ping Li & Xuebin Qi & Wei Guo & Shafeeq Ur Rahman & Hongfei Lu & Cancan Ma & Zhenjie Du & Jiaxin Cui & Zhijie Liang, 2022. "Effects of Shallow Groundwater Depth and Nitrogen Application Level on Soil Water and Nitrate Content, Growth and Yield of Winter Wheat," Agriculture, MDPI, vol. 12(2), pages 1-19, February.
    12. Irmak, Suat & Mohammed, Ali T. & Drudik, Matthew, 2023. "Maize nitrogen uptake, grain nitrogen concentration and root-zone residual nitrate nitrogen response under center pivot, subsurface drip and surface (furrow) irrigation," Agricultural Water Management, Elsevier, vol. 287(C).
    13. Fang, Qin & Wang, Yanzhe & Uwimpaye, Fasilate & Yan, Zongzheng & Li, Lu & Liu, Xiuwei & Shao, Liwei, 2021. "Pre-sowing soil water conditions and water conservation measures affecting the yield and water productivity of summer maize," Agricultural Water Management, Elsevier, vol. 245(C).
    14. Bitopi Biswas & Mohammad Tariful Alam Khan & Mohammad Billal Hossain Momen & Mohammad. Rashedur Rahman Tanvir & Abu Mohammad Shahidul Alam & M Robiul Islam Islam, 2024. "Advancements in fuzzy expert systems for site-specific nitrogen fertilisation: Incorporating RGB colour codes and irrigation schedules for precision maize production in Bangladesh," Research in Agricultural Engineering, Czech Academy of Agricultural Sciences, vol. 70(3), pages 155-166.
    15. Li, Cheng & Feng, Hao & Luo, Xiaoqi & Li, Yue & Wang, Naijiang & Wu, Wenjie & Zhang, Tibin & Dong, Qin’ge & Siddique, Kadambot H.M., 2022. "Limited irrigation and fertilization in sand-layered soil increases nitrogen use efficiency and economic benefits under film mulched ridge-furrow irrigation in arid areas," Agricultural Water Management, Elsevier, vol. 262(C).
    16. Hong, Tingting & Cai, Zelin & Li, Rui & Liu, Jiecheng & Li, Jinglai & Wang, Zheng & Zhang, Zhi, 2022. "Effects of water and nitrogen coupling on watermelon growth, photosynthesis and yield under CO2 enrichment," Agricultural Water Management, Elsevier, vol. 259(C).
    17. Guo, Jinjin & Fan, Junliang & Xiang, Youzhen & Zhang, Fucang & Yan, Shicheng & Zhang, Xueyan & Zheng, Jing & Hou, Xianghao & Tang, Zijun & Li, Zhijun, 2022. "Maize leaf functional responses to blending urea and slow-release nitrogen fertilizer under various drip irrigation regimes," Agricultural Water Management, Elsevier, vol. 262(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chilundo, Mario & Joel, Abraham & Wesström, Ingrid & Brito, Rui & Messing, Ingmar, 2018. "Influence of irrigation and fertilisation management on the seasonal distribution of water and nitrogen in a semi-arid loamy sandy soil," Agricultural Water Management, Elsevier, vol. 199(C), pages 120-137.
    2. Wang, Yufeng & Kang, Shaozhong & Li, Fusheng & Zhang, Xiaotao, 2021. "Modified water-nitrogen productivity function based on response of water sensitive index to nitrogen for hybrid maize under drip fertigation," Agricultural Water Management, Elsevier, vol. 245(C).
    3. Chilundo, Mario & Joel, Abraham & Wesström, Ingrid & Brito, Rui & Messing, Ingmar, 2016. "Effects of reduced irrigation dose and slow release fertiliser on nitrogen use efficiency and crop yield in a semi-arid loamy sand," Agricultural Water Management, Elsevier, vol. 168(C), pages 68-77.
    4. Guo, Jinjin & Fan, Junliang & Xiang, Youzhen & Zhang, Fucang & Yan, Shicheng & Zhang, Xueyan & Zheng, Jing & Hou, Xianghao & Tang, Zijun & Li, Zhijun, 2022. "Maize leaf functional responses to blending urea and slow-release nitrogen fertilizer under various drip irrigation regimes," Agricultural Water Management, Elsevier, vol. 262(C).
    5. Žalud, Zdeněk & Hlavinka, Petr & Prokeš, Karel & Semerádová, Daniela & Balek Jan, & Trnka, Miroslav, 2017. "Impacts of water availability and drought on maize yield – A comparison of 16 indicators," Agricultural Water Management, Elsevier, vol. 188(C), pages 126-135.
    6. Zou, Haiyang & Fan, Junliang & Zhang, Fucang & Xiang, Youzhen & Wu, Lifeng & Yan, Shicheng, 2020. "Optimization of drip irrigation and fertilization regimes for high grain yield, crop water productivity and economic benefits of spring maize in Northwest China," Agricultural Water Management, Elsevier, vol. 230(C).
    7. Gheysari, Mahdi & Pirnajmedin, Fatemeh & Movahedrad, Hamid & Majidi, Mohammad Mahdi & Zareian, Mohammad Javad, 2021. "Crop yield and irrigation water productivity of silage maize under two water stress strategies in semi-arid environment: Two different pot and field experiments," Agricultural Water Management, Elsevier, vol. 255(C).
    8. Smith, Jo U. & Fischer, Anke & Hallett, Paul D. & Homans, Hilary Y. & Smith, Pete & Abdul-Salam, Yakubu & Emmerling, Hanna H. & Phimister, Euan, 2015. "Sustainable use of organic resources for bioenergy, food and water provision in rural Sub-Saharan Africa," Renewable and Sustainable Energy Reviews, Elsevier, vol. 50(C), pages 903-917.
    9. Singh, Pritpal & Singh, Gurdeep & Sodhi, G.P.S., 2019. "Energy auditing and optimization approach for improving energy efficiency of rice cultivation in south-western Punjab, India," Energy, Elsevier, vol. 174(C), pages 269-279.
    10. Liu, Pengzhao & Fan, Zhen & Yan, Zinan & Ren, Xiaolong & Zhao, Xining & Zhang, Jianjun & Chen, Xiaoli, 2024. "Evaluation of N nutrition and optimal fertilizer rate for ridge-furrow mulched maize based on critical N dilution curve under different water conditions," Agricultural Water Management, Elsevier, vol. 296(C).
    11. Jia, Qianmin & Xu, Ranran & Chang, Shenghua & Zhang, Cheng & Liu, Yongjie & Shi, Wei & Peng, Zechen & Hou, Fujiang, 2020. "Planting practices with nutrient strategies to improves productivity of rain-fed corn and resource use efficiency in semi-arid regions," Agricultural Water Management, Elsevier, vol. 228(C).
    12. Sun, Mengyuan & Chen, Wen & Lapen, David R. & Ma, Bin & Lu, Peina & Liu, Jinghui, 2023. "Effects of ridge-furrow with plastic film mulching combining with various urea types on water productivity and yield of potato in a dryland farming system," Agricultural Water Management, Elsevier, vol. 283(C).
    13. Libutti, Angela & Monteleone, Massimo, 2017. "Soil vs. groundwater: The quality dilemma. Managing nitrogen leaching and salinity control under irrigated agriculture in Mediterranean conditions," Agricultural Water Management, Elsevier, vol. 186(C), pages 40-50.
    14. Hernández, M.D. & Alfonso, C. & Echarte, M.M. & Cerrudo, A. & Echarte, L., 2021. "Maize transpiration efficiency increases with N supply or higher plant densities," Agricultural Water Management, Elsevier, vol. 250(C).
    15. Wang, Xiukang & Guo, Tao & Wang, Yi & Xing, Yingying & Wang, Yanfeng & He, Xiaolong, 2020. "Exploring the optimization of water and fertilizer management practices for potato production in the sandy loam soils of Northwest China based on PCA," Agricultural Water Management, Elsevier, vol. 237(C).
    16. Zhiqin Zhang & Xiaodong Xie & Muhammad Asad Naseer & Haiyu Zhou & Weidong Cheng & Hexia Xie & Lanqiu Qin & Xiang Yang & Yufeng Jiang & Xunbo Zhou, 2024. "Screening and Physiological Responses of Maize Inbred Lines to Drought Stress in South China," Sustainability, MDPI, vol. 16(17), pages 1-16, August.
    17. Dokoohaki, Hamze & Gheysari, Mahdi & Mousavi, Sayed-Farhad & Zand-Parsa, Shahrokh & Miguez, Fernando E. & Archontoulis, Sotirios V. & Hoogenboom, Gerrit, 2016. "Coupling and testing a new soil water module in DSSAT CERES-Maize model for maize production under semi-arid condition," Agricultural Water Management, Elsevier, vol. 163(C), pages 90-99.
    18. Srivastava, Amit Kumar & Mboh, Cho Miltin & Gaiser, Thomas & Kuhn, Arnim & Ermias, Engida & Ewert, Frank, 2019. "Effect of mineral fertilizer on rain water and radiation use efficiencies for maize yield and stover biomass productivity in Ethiopia," Agricultural Systems, Elsevier, vol. 168(C), pages 88-100.
    19. Lu, Junsheng & Hu, Tiantian & Zhang, Baocheng & Wang, Li & Yang, Shuohuan & Fan, Junliang & Yan, Shicheng & Zhang, Fucang, 2021. "Nitrogen fertilizer management effects on soil nitrate leaching, grain yield and economic benefit of summer maize in Northwest China," Agricultural Water Management, Elsevier, vol. 247(C).
    20. Taotao Chen & Erping Cui & Yanbo Zhang & Ge Gao & Hao You & Yurun Tian & Chao Hu & Yuan Liu & Tao Fan & Xiangyang Fan, 2024. "Microbial Network Complexity Helps to Reduce the Deep Migration of Chemical Fertilizer Nitrogen Under the Combined Application of Varying Irrigation Amounts and Multiple Nitrogen Sources," Agriculture, MDPI, vol. 14(12), pages 1-18, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:227:y:2020:i:c:s0378377419301064. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.