IDEAS home Printed from https://ideas.repec.org/a/gam/jagris/v11y2021i8p695-d600461.html
   My bibliography  Save this article

Energy Assessment of Sorghum Cultivation in Southern Ukraine

Author

Listed:
  • Oleg Bazaluk

    (Belt and Road Initiative Institute for Chinese-European Studies, Guangdong University of Petrochemical Technology, Maoming 525000, China)

  • Valerii Havrysh

    (Department of Tractors and Agricultural Machinery, Operating and Maintenance, Mykolayiv National Agrarian University, 54020 Mykolaiv, Ukraine)

  • Mykhailo Fedorchuk

    (Department of Crop and Horticulture, Mykolayiv National Agrarian University, 54020 Mykolaiv, Ukraine)

  • Vitalii Nitsenko

    (Department of Economics and Finance, Odesa National Maritime University, 65029 Odesa, Ukraine
    SCIRE Foundation, 00867 Warsaw, Poland)

Abstract

Global climate changes and fossil fuel reserve depletion are drivers for the search for environmentally friendly renewable energy sources. In Europe, biomass represents the main alternative to fossil fuels. Among energy crops, sorghum is a promising crop for arid regions. The biomass yield and energy efficiency of sorghum (both silage and grain) were studied based on field experiments conducted in Southern Ukraine. The following climate changes were identified: an increase in temperature and a decrease in precipitation. The total energy inputs for sweet sorghum were estimated at 11.256 GJ/ha. The main contributors to the energy inputs are mineral fertilizers (56.99%). The experiment showed that a yield of 40.6 t/ha could be achieved with annual precipitation of 350 mm. The energy efficiency ratio was determined to be 11.18. The total energy inputs for grain sorghum was 16.081 GJ/ha. Its yield (grain) varied from 1.92 to 7.05 t/ha. The energy efficiency ratio of grain sorghum ranged from 2.8 to 16.7.

Suggested Citation

  • Oleg Bazaluk & Valerii Havrysh & Mykhailo Fedorchuk & Vitalii Nitsenko, 2021. "Energy Assessment of Sorghum Cultivation in Southern Ukraine," Agriculture, MDPI, vol. 11(8), pages 1-22, July.
  • Handle: RePEc:gam:jagris:v:11:y:2021:i:8:p:695-:d:600461
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2077-0472/11/8/695/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2077-0472/11/8/695/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Larnaudie, Valeria & Rochón, Eloísa & Ferrari, Mario Daniel & Lareo, Claudia, 2016. "Energy evaluation of fuel bioethanol production from sweet sorghum using very high gravity (VHG) conditions," Renewable Energy, Elsevier, vol. 88(C), pages 280-287.
    2. Stanisław Bielski & Kęstutis Romaneckas & Anastasija Novikova & Egidijus Šarauskis, 2019. "Are Higher Input Levels to Triticale Growing Technologies Effective in Biofuel Production System?," Sustainability, MDPI, vol. 11(21), pages 1-15, October.
    3. Renata Marks-Bielska & Stanisław Bielski & Anastasija Novikova & Kęstutis Romaneckas, 2019. "Straw Stocks as a Source of Renewable Energy. A Case Study of a District in Poland," Sustainability, MDPI, vol. 11(17), pages 1-18, August.
    4. Anna, Petrenko, 2016. "Мaркування готової продукції як складова частина інформаційного забезпечення маркетингової діяльності підприємств овочепродуктового підкомплексу," Agricultural and Resource Economics: International Scientific E-Journal, Agricultural and Resource Economics: International Scientific E-Journal, vol. 2(1), March.
    5. Pervanchon, F. & Bockstaller, C. & Girardin, P., 2002. "Assessment of energy use in arable farming systems by means of an agro-ecological indicator: the energy indicator," Agricultural Systems, Elsevier, vol. 72(2), pages 149-172, May.
    6. Eduardo Aguilera & Gloria I. Guzmán & Juan Infante-Amate & David Soto & Roberto García-Ruiz & Antonio Herrera & Inmaculada Villa & Eva Torremocha & Guiomar Carranza & Manuel González de Molina, 2015. "Embodied energy in agricultural inputs. Incorporating a historical perspective," Documentos de Trabajo de la Sociedad de Estudios de Historia Agraria 1507, Sociedad de Estudios de Historia Agraria.
    7. Jankowski, Krzysztof Józef & Dubis, Bogdan & Budzyński, Wojciech Stefan & Bórawski, Piotr & Bułkowska, Katarzyna, 2016. "Energy efficiency of crops grown for biogas production in a large-scale farm in Poland," Energy, Elsevier, vol. 109(C), pages 277-286.
    8. Ahmad Dar, Rouf & Ahmad Dar, Eajaz & Kaur, Ajit & Gupta Phutela, Urmila, 2018. "Sweet sorghum-a promising alternative feedstock for biofuel production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 4070-4090.
    9. Inesa Mikhno & Viktor Koval & Galyna Shvets & Oksana Garmatiuk & Rima Tamošiūnienė, 2021. "Green Economy in Sustainable Development and Improvement of Resource Efficiency," Central European Business Review, Prague University of Economics and Business, vol. 2021(1), pages 99-113.
    10. Giuseppe Todde & Lelia Murgia & Maria Caria & Antonio Pazzona, 2018. "A Comprehensive Energy Analysis and Related Carbon Footprint of Dairy Farms, Part 2: Investigation and Modeling of Indirect Energy Requirements," Energies, MDPI, vol. 11(2), pages 1-13, February.
    11. Yongzhong Jiang & Valerii Havrysh & Oleksandr Klymchuk & Vitalii Nitsenko & Tomas Balezentis & Dalia Streimikiene, 2019. "Utilization of Crop Residue for Power Generation: The Case of Ukraine," Sustainability, MDPI, vol. 11(24), pages 1-21, December.
    12. Vitalii Nitsenko & Abbas Mardani & Justas Streimikis & Iryna Shkrabak & Ivan Klopov & Oleh Novomlynets & Olha Podolska, 2018. "Criteria for Evaluation of Efficiency of Energy Transformation Based on Renewable Energy Sources," Montenegrin Journal of Economics, Economic Laboratory for Transition Research (ELIT), vol. 14(4), pages 237-247.
    13. Anatoly Shvidenko & Igor Buksha & Svitlana Krakovska & Petro Lakyda, 2017. "Vulnerability of Ukrainian Forests to Climate Change," Sustainability, MDPI, vol. 9(7), pages 1-35, June.
    14. Jolanta Batog & Jakub Frankowski & Aleksandra Wawro & Agnieszka Łacka, 2020. "Bioethanol Production from Biomass of Selected Sorghum Varieties Cultivated as Main and Second Crop," Energies, MDPI, vol. 13(23), pages 1-12, November.
    15. Federico Battista & Nicola Frison & David Bolzonella, 2019. "Energy and Nutrients’ Recovery in Anaerobic Digestion of Agricultural Biomass: An Italian Perspective for Future Applications," Energies, MDPI, vol. 12(17), pages 1-13, August.
    16. Andreas Meyer-Aurich & Yulia Lochmann & Hilde Klauss & Annette Prochnow, 2016. "Comparative Advantage of Maize- and Grass-Silage Based Feedstock for Biogas Production with Respect to Greenhouse Gas Mitigation," Sustainability, MDPI, vol. 8(7), pages 1-14, June.
    17. Ren, Lan Tian & Liu, Zu Xin & Wei, Tong Yang & Xie, Guang Hui, 2012. "Evaluation of energy input and output of sweet sorghum grown as a bioenergy crop on coastal saline-alkali land," Energy, Elsevier, vol. 47(1), pages 166-173.
    18. Su, Yujie & Zhang, Peidong & Su, Yuqing, 2015. "An overview of biofuels policies and industrialization in the major biofuel producing countries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 50(C), pages 991-1003.
    19. Agostinho Rocha & Armando Araújo & Adriano Carvalho & João Sepulveda, 2018. "A New Approach for Real Time Train Energy Efficiency Optimization," Energies, MDPI, vol. 11(10), pages 1-21, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Valerii Havrysh & Vitalii Nitsenko & Vasyl Hruban, 2022. "Sorghum-Based Power Generation in Southern Ukraine: Energy and Environmental Assessment," Agriculture, MDPI, vol. 12(12), pages 1-15, December.
    2. Igor Atamanyuk & Valerii Havrysh & Vitalii Nitsenko & Oleksii Diachenko & Mariia Tepliuk & Tetiana Chebakova & Hanna Trofimova, 2022. "Forecasting of Winter Wheat Yield: A Mathematical Model and Field Experiments," Agriculture, MDPI, vol. 13(1), pages 1-22, December.
    3. Rita Bužinskienė & Astrida Miceikienė, 2022. "Cost–Benefit Analysis for Supply Chain of Renewable Gases from Perennial Energy Crops: The Case of Lithuania," Sustainability, MDPI, vol. 14(17), pages 1-16, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Iosvany López-Sandin & Guadalupe Gutiérrez-Soto & Adriana Gutiérrez-Díez & Nancy Medina-Herrera & Edgar Gutiérrez-Castorena & Francisco Zavala-García, 2019. "Evaluation of the Use of Energy in the Production of Sweet Sorghum ( Sorghum Bicolor (L.) Moench) under Different Production Systems," Energies, MDPI, vol. 12(9), pages 1-13, May.
    2. Dubis, Bogdan & Jankowski, Krzysztof Józef & Sokólski, Mateusz Mikołaj & Załuski, Dariusz & Bórawski, Piotr & Szempliński, Władysław, 2020. "Biomass yield and energy balance of fodder galega in different production technologies: An 11-year field experiment in a large-area farm in Poland," Renewable Energy, Elsevier, vol. 154(C), pages 813-825.
    3. Valerii Havrysh & Vitalii Nitsenko & Vasyl Hruban, 2022. "Sorghum-Based Power Generation in Southern Ukraine: Energy and Environmental Assessment," Agriculture, MDPI, vol. 12(12), pages 1-15, December.
    4. Dubis, Bogdan & Jankowski, Krzysztof Józef & Załuski, Dariusz & Sokólski, Mateusz, 2020. "The effect of sewage sludge fertilization on the biomass yield of giant miscanthus and the energy balance of the production process," Energy, Elsevier, vol. 206(C).
    5. Mohsen Jamali & Esmaeil Bakhshandeh & Mohammad Yaghoubi Khanghahi & Carmine Crecchio, 2021. "Metadata Analysis to Evaluate Environmental Impacts of Wheat Residues Burning on Soil Quality in Developing and Developed Countries," Sustainability, MDPI, vol. 13(11), pages 1-13, June.
    6. Jéssica Bárbara da Silva & Edvaldo Pereira Santos Júnior & João Gabriel Távora Pedrosa & Aldo Torres Sales & Everardo Valadares de Sa Barretto Sampaio & Rômulo Simões Cezar Menezes & Emmanuel Damilano, 2022. "Energetic and Economic Analysis of Spineless Cactus Biomass Production in the Brazilian Semi-arid Region," Energies, MDPI, vol. 15(14), pages 1-16, July.
    7. Valerii Havrysh & Antonina Kalinichenko & Grzegorz Mentel & Tadeusz Olejarz, 2020. "Commercial Biogas Plants: Lessons for Ukraine," Energies, MDPI, vol. 13(10), pages 1-24, May.
    8. Martinho, Vítor João Pereira Domingues, 2021. "Direct and indirect energy consumption in farming: Impacts from fertilizer use," Energy, Elsevier, vol. 236(C).
    9. Krystyna Kurowska & Renata Marks-Bielska & Stanisław Bielski & Hubert Kryszk & Algirdas Jasinskas, 2020. "Food Security in the Context of Liquid Biofuels Production," Energies, MDPI, vol. 13(23), pages 1-16, November.
    10. Mariana Abreu & Luís Silva & Belina Ribeiro & Alice Ferreira & Luís Alves & Susana M. Paixão & Luísa Gouveia & Patrícia Moura & Florbela Carvalheiro & Luís C. Duarte & Ana Luisa Fernando & Alberto Rei, 2022. "Low Indirect Land Use Change (ILUC) Energy Crops to Bioenergy and Biofuels—A Review," Energies, MDPI, vol. 15(12), pages 1-68, June.
    11. Paris, Bas & Vandorou, Foteini & Balafoutis, Athanasios T. & Vaiopoulos, Konstantinos & Kyriakarakos, George & Manolakos, Dimitris & Papadakis, George, 2022. "Energy use in open-field agriculture in the EU: A critical review recommending energy efficiency measures and renewable energy sources adoption," Renewable and Sustainable Energy Reviews, Elsevier, vol. 158(C).
    12. Marek Helis & Maria Strzelczyk & Wojciech Golimowski & Aleksandra Steinhoff-Wrześniewska & Anna Paszkiewicz-Jasińska & Małgorzata Hawrot-Paw & Adam Koniuszy & Marek Hryniewicz, 2021. "Biomass Potential of the Marginal Land of the Polish Sudetes Mountain Range," Energies, MDPI, vol. 14(21), pages 1-16, November.
    13. Vivian Welch & Christine M. Mathew & Panteha Babelmorad & Yanfei Li & Elizabeth T. Ghogomu & Johan Borg & Monserrat Conde & Elizabeth Kristjansson & Anne Lyddiatt & Sue Marcus & Jason W. Nickerson & K, 2021. "Health, social care and technological interventions to improve functional ability of older adults living at home: An evidence and gap map," Campbell Systematic Reviews, John Wiley & Sons, vol. 17(3), September.
    14. Persson, Petra & Qiu, Xinyao & Rossin-Slater, Maya, 2021. "Family Spillover Effects of Marginal Diagnoses: The Case of ADHD," IZA Discussion Papers 14020, Institute of Labor Economics (IZA).
    15. Menkhoff, Lukas & Miethe, Jakob, 2019. "Tax evasion in new disguise? Examining tax havens' international bank deposits," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 176, pages 53-78.
    16. Ran Abramitzky & Roy Mill & Santiago Pérez, 2020. "Linking individuals across historical sources: A fully automated approach," Historical Methods: A Journal of Quantitative and Interdisciplinary History, Taylor & Francis Journals, vol. 53(2), pages 94-111, April.
    17. Wenbo Ai & Haeng Muk Cho, 2024. "Predictive Models for Biodiesel Performance and Emission Characteristics in Diesel Engines: A Review," Energies, MDPI, vol. 17(19), pages 1-25, September.
    18. Werner Eichhorst & Ulf Rinne, 2017. "Digital Challenges for the Welfare State," CESifo Forum, ifo Institute - Leibniz Institute for Economic Research at the University of Munich, vol. 18(04), pages 03-08, December.
    19. Sant'Anna, Ana Claudia & Bergtold, Jason & Shanoyan, Aleksan & Caldas, Marcellus & Granco, Gabriel, 2021. "Deal or No Deal? Analysis of Bioenergy Feedstock Contract Choice with Multiple Opt-out Options and Contract Attribute Substitutability," 2021 Conference, August 17-31, 2021, Virtual 315289, International Association of Agricultural Economists.
    20. Tommaso Colussi & Ingo E. Isphording & Nico Pestel, 2021. "Minority Salience and Political Extremism," American Economic Journal: Applied Economics, American Economic Association, vol. 13(3), pages 237-271, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jagris:v:11:y:2021:i:8:p:695-:d:600461. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.