IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v88y2016icp280-287.html
   My bibliography  Save this article

Energy evaluation of fuel bioethanol production from sweet sorghum using very high gravity (VHG) conditions

Author

Listed:
  • Larnaudie, Valeria
  • Rochón, Eloísa
  • Ferrari, Mario Daniel
  • Lareo, Claudia

Abstract

The bioethanol production from concentrated sweet sorghum juice (142–318 g/L sugar) was studied experimentally. The effects of the juice sugar content, juice concentration prior to fermentation (VHG conditions), fermentation efficiency, and fermentation time on the energy consumption of the industrial process were evaluated using Aspen Plus® software and experimental data. The use of sorghum varieties with high sugar content and of high performance industrial yeasts reduced significantly the energy consumption. However, the decrease in energy consumption in the product recovery by using VHG conditions was less than the increase in energy consumption necessary to get these conditions (juice concentration). The VHG technology can be justified if the concentration of the juice is needed for its storage to avoid spoilage. It can also be used when the sugar content in the raw juice is high and there is no need of juice concentration to work under VHG conditions.

Suggested Citation

  • Larnaudie, Valeria & Rochón, Eloísa & Ferrari, Mario Daniel & Lareo, Claudia, 2016. "Energy evaluation of fuel bioethanol production from sweet sorghum using very high gravity (VHG) conditions," Renewable Energy, Elsevier, vol. 88(C), pages 280-287.
  • Handle: RePEc:eee:renene:v:88:y:2016:i:c:p:280-287
    DOI: 10.1016/j.renene.2015.11.041
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148115304596
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2015.11.041?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wang, Lei & Sharifzadeh, Mahdi & Templer, Richard & Murphy, Richard J., 2013. "Bioethanol production from various waste papers: Economic feasibility and sensitivity analysis," Applied Energy, Elsevier, vol. 111(C), pages 1172-1182.
    2. Dias, M.O.S. & Junqueira, T.L. & Jesus, C.D.F. & Rossell, C.E.V. & Maciel Filho, R. & Bonomi, A., 2012. "Improving bioethanol production – Comparison between extractive and low temperature fermentation," Applied Energy, Elsevier, vol. 98(C), pages 548-555.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Puligundla, Pradeep & Smogrovicova, Daniela & Mok, Chulkyoon & Obulam, Vijaya Sarathi Reddy, 2019. "A review of recent advances in high gravity ethanol fermentation," Renewable Energy, Elsevier, vol. 133(C), pages 1366-1379.
    2. Rolz, Carlos & de León, Robert & Mendizábal de Montenegro, Ana Luisa & Porras, Vilma & Cifuentes, Rolando, 2017. "A multiple harvest cultivation strategy for ethanol production from sweet sorghum throughout the year in tropical ecosystems," Renewable Energy, Elsevier, vol. 106(C), pages 103-110.
    3. Oleg Bazaluk & Valerii Havrysh & Mykhailo Fedorchuk & Vitalii Nitsenko, 2021. "Energy Assessment of Sorghum Cultivation in Southern Ukraine," Agriculture, MDPI, vol. 11(8), pages 1-22, July.
    4. Parisa Heidarnejad & Hadi Genceli & Nasim Hashemian & Mustafa Asker & Mohammad Al-Rawi, 2024. "Biomass-Fueled Organic Rankine Cycles: State of the Art and Future Trends," Energies, MDPI, vol. 17(15), pages 1-30, August.
    5. Iosvany López-Sandin & Guadalupe Gutiérrez-Soto & Adriana Gutiérrez-Díez & Nancy Medina-Herrera & Edgar Gutiérrez-Castorena & Francisco Zavala-García, 2019. "Evaluation of the Use of Energy in the Production of Sweet Sorghum ( Sorghum Bicolor (L.) Moench) under Different Production Systems," Energies, MDPI, vol. 12(9), pages 1-13, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hatem Abushammala & Muhammad Adil Masood & Salma Taqi Ghulam & Jia Mao, 2023. "On the Conversion of Paper Waste and Rejects into High-Value Materials and Energy," Sustainability, MDPI, vol. 15(8), pages 1-21, April.
    2. Leon, Juan A. & Palacios-Bereche, Reynaldo & Nebra, Silvia A., 2016. "Batch pervaporative fermentation with coupled membrane and its influence on energy consumption in permeate recovery and distillation stage," Energy, Elsevier, vol. 109(C), pages 77-91.
    3. Rendon-Sagardi, Miguel A. & Sanchez-Ramirez, Cuauhtemoc & Cortes-Robles, Guillermo & Alor-Hernandez, Giner & Cedillo-Campos, Miguel G., 2014. "Dynamic analysis of feasibility in ethanol supply chain for biofuel production in Mexico," Applied Energy, Elsevier, vol. 123(C), pages 358-367.
    4. Schneider, Willian Daniel Hahn & Fontana, Roselei Claudete & Baudel, Henrique Macedo & de Siqueira, Félix Gonçalves & Rencoret, Jorge & Gutiérrez, Ana & de Eugenio, Laura Isabel & Prieto, Alicia & Mar, 2020. "Lignin degradation and detoxification of eucalyptus wastes by on-site manufacturing fungal enzymes to enhance second-generation ethanol yield," Applied Energy, Elsevier, vol. 262(C).
    5. Singh, Shuchi & Khanna, Swati & Moholkar, Vijayanand S. & Goyal, Arun, 2014. "Screening and optimization of pretreatments for Parthenium hysterophorus as feedstock for alcoholic biofuels," Applied Energy, Elsevier, vol. 129(C), pages 195-206.
    6. Chen, Wei-Cheng & Sheng, Chung-Teh & Liu, Yu-Cheng & Chen, Wei-Jen & Huang, Wen-Luh & Chang, Shih-Hsien & Chang, Wei-Che, 2014. "Optimizing the efficiency of anhydrous ethanol purification via regenerable molecular sieve," Applied Energy, Elsevier, vol. 135(C), pages 483-489.
    7. Ntihuga, Jean Nepomuscene & Senn, Thomas & Gschwind, Peter & Kohlus, Reinhard, 2013. "An evaluation of different bioreactor configurations for continuous bio-ethanol production," Applied Energy, Elsevier, vol. 108(C), pages 194-201.
    8. Kim, Jieun & Kim, Ki-Hyun & Kwon, Eilhann E., 2016. "Enhanced thermal cracking of VOCs evolved from the thermal degradation of lignin using CO2," Energy, Elsevier, vol. 100(C), pages 51-57.
    9. Sharifzadeh, Mahdi & Wang, Lei & Shah, Nilay, 2015. "Integrated biorefineries: CO2 utilization for maximum biomass conversion," Renewable and Sustainable Energy Reviews, Elsevier, vol. 47(C), pages 151-161.
    10. Yılmaz Balaman, Şebnem & Wright, Daniel G. & Scott, James & Matopoulos, Aristides, 2018. "Network design and technology management for waste to energy production: An integrated optimization framework under the principles of circular economy," Energy, Elsevier, vol. 143(C), pages 911-933.
    11. Tan, Inn Shi & Lee, Keat Teong, 2014. "Enzymatic hydrolysis and fermentation of seaweed solid wastes for bioethanol production: An optimization study," Energy, Elsevier, vol. 78(C), pages 53-62.
    12. Wang, Tiejun & Li, Kai & Liu, Qiying & Zhang, Qing & Qiu, Songbai & Long, Jinxing & Chen, Lungang & Ma, Longlong & Zhang, Qi, 2014. "Aviation fuel synthesis by catalytic conversion of biomass hydrolysate in aqueous phase," Applied Energy, Elsevier, vol. 136(C), pages 775-780.
    13. Gao, Xueying & Li, Helong & Wang, Shuizhong & Liu, Zhenzhen & Ma, Jian-feng & Liu, Xing-e & Song, Guoyong, 2022. "Hydrodeoxygenation of lignin biophenolics to cyclohexanes over sub-nanometric Ru multifunctional catalyst," Renewable Energy, Elsevier, vol. 201(P1), pages 724-733.
    14. Milão, Raquel de Freitas Dias & Carminati, Hudson B. & Araújo, Ofélia de Queiroz F. & de Medeiros, José Luiz, 2019. "Thermodynamic, financial and resource assessments of a large-scale sugarcane-biorefinery: Prelude of full bioenergy carbon capture and storage scenario," Renewable and Sustainable Energy Reviews, Elsevier, vol. 113(C), pages 1-1.
    15. Balaman, Şebnem Yılmaz & Selim, Hasan, 2014. "A network design model for biomass to energy supply chains with anaerobic digestion systems," Applied Energy, Elsevier, vol. 130(C), pages 289-304.
    16. Canabarro, Nicholas I. & Alessio, Cláudia & Foletto, Edson L. & Kuhn, Raquel C. & Priamo, Wagner L. & Mazutti, Marcio A., 2017. "Ethanol production by solid-state saccharification and fermentation in a packed-bed bioreactor," Renewable Energy, Elsevier, vol. 102(PA), pages 9-14.
    17. Dias, Marina O.S. & Junqueira, Tassia L. & Cavalett, Otávio & Pavanello, Lucas G. & Cunha, Marcelo P. & Jesus, Charles D.F. & Maciel Filho, Rubens & Bonomi, Antonio, 2013. "Biorefineries for the production of first and second generation ethanol and electricity from sugarcane," Applied Energy, Elsevier, vol. 109(C), pages 72-78.
    18. Palacios-Bereche, Reynaldo & Mosqueira-Salazar, Klever Joao & Modesto, Marcelo & Ensinas, Adriano V. & Nebra, Silvia A. & Serra, Luis M. & Lozano, Miguel-Angel, 2013. "Exergetic analysis of the integrated first- and second-generation ethanol production from sugarcane," Energy, Elsevier, vol. 62(C), pages 46-61.
    19. Nair, Anu Sadasivan & Al-Bahry, Saif & Gathergood, Nicholas & Tripathi, Bhumi Nath & Sivakumar, Nallusamy, 2020. "Production of microbial lipids from optimized waste office paper hydrolysate, lipid profiling and prediction of biodiesel properties," Renewable Energy, Elsevier, vol. 148(C), pages 124-134.
    20. Fan, Senqing & Xiao, Zeyi & Li, Minghai & Li, Sizhong, 2016. "Pervaporation membrane bioreactor with permeate fractional condensation and mechanical vapor compression for energy efficient ethanol production," Applied Energy, Elsevier, vol. 179(C), pages 939-947.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:88:y:2016:i:c:p:280-287. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.