IDEAS home Printed from https://ideas.repec.org/a/gam/jagris/v11y2021i5p445-d555229.html
   My bibliography  Save this article

Changes in Bacterial and Fungal Soil Communities in Long-Term Organic Cropping Systems

Author

Listed:
  • Jessica Cuartero

    (Centre of Edaphology and Applied Biology of the Segura (CEBAS-CSIC), University Campus of Espinardo, 30100 Murcia, Spain)

  • Onurcan Özbolat

    (Institute of Plant Biotechnology, Technical University of Cartagena, Plaza del Hospital s/n, 30202 Cartagena, Spain)

  • Virginia Sánchez-Navarro

    (Department of Agricultural Science, Universidad Politécnica de Cartagena, Paseo Alfonso XIII 48, 30203 Cartagena, Spain)

  • Marcos Egea-Cortines

    (Institute of Plant Biotechnology, Technical University of Cartagena, Plaza del Hospital s/n, 30202 Cartagena, Spain)

  • Raúl Zornoza

    (Department of Agricultural Science, Universidad Politécnica de Cartagena, Paseo Alfonso XIII 48, 30203 Cartagena, Spain)

  • Loredana Canfora

    (Research Centre for Agriculture & Environment (AA), Council for Agricultural Research and Economics (CREA), Via della Navicella 2-4, 00184 Roma, Italy)

  • Luigi Orrù

    (Council for Agricultural Research and Economics (CREA) Research Centre for Genomics and Bioinformatics, Via S. Protaso 302, 29017 Fiorenzuola d’Arda, Italy)

  • Jose Antonio Pascual

    (Centre of Edaphology and Applied Biology of the Segura (CEBAS-CSIC), University Campus of Espinardo, 30100 Murcia, Spain)

  • Juana-María Vivo

    (Department of Statistics and Operations Research, University of Murcia, CMN & IMIB-Arrixaca, 30100 Murcia, Spain)

  • Margarita Ros

    (Centre of Edaphology and Applied Biology of the Segura (CEBAS-CSIC), University Campus of Espinardo, 30100 Murcia, Spain)

Abstract

Long-term organic farming aims to reduce synthetic fertilizer and pesticide use in order to sustainably produce and improve soil quality. To do this, there is a need for more information about the soil microbial community, which plays a key role in a sustainable agriculture. In this paper, we assessed the long-term effects of two organic and one conventional cropping systems on the soil microbial community structure using high-throughput sequencing analysis, as well as the link between these communities and the changes in the soil properties and crop yield. The results showed that the crop yield was similar among the three cropping systems. The microbial community changed according to cropping system. Organic cultivation with manure compost and compost tea (Org_C) showed a change in the bacterial community associated with an improved soil carbon and nutrient content. A linear discriminant analysis effect size showed different bacteria and fungi as key microorganisms for each of the three different cropping systems, for conventional systems (Conv), different microorganisms such as Nesterenkonia, Galbibacter, Gramella, Limnobacter, Pseudoalteromonas, Pantoe , and Sporobolomyces were associated with pesticides, while for Org_C and organic cultivation with manure (Org_M), other types of microorganisms were associated with organic amendments with different functions, which, in some cases, reduce soil borne pathogens. However, further investigations such as functional approaches or network analyses are need to better understand the mechanisms behind this behavior.

Suggested Citation

  • Jessica Cuartero & Onurcan Özbolat & Virginia Sánchez-Navarro & Marcos Egea-Cortines & Raúl Zornoza & Loredana Canfora & Luigi Orrù & Jose Antonio Pascual & Juana-María Vivo & Margarita Ros, 2021. "Changes in Bacterial and Fungal Soil Communities in Long-Term Organic Cropping Systems," Agriculture, MDPI, vol. 11(5), pages 1-19, May.
  • Handle: RePEc:gam:jagris:v:11:y:2021:i:5:p:445-:d:555229
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2077-0472/11/5/445/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2077-0472/11/5/445/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. de Ponti, Tomek & Rijk, Bert & van Ittersum, Martin K., 2012. "The crop yield gap between organic and conventional agriculture," Agricultural Systems, Elsevier, vol. 108(C), pages 1-9.
    2. Régina D.C. Bonou-zin & Khalil Allali & Aziz Fadlaoui, 2019. "Environmental Efficiency of Organic and Conventional Cotton in Benin," Sustainability, MDPI, vol. 11(11), pages 1-17, May.
    3. Lê, Sébastien & Josse, Julie & Husson, François, 2008. "FactoMineR: An R Package for Multivariate Analysis," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 25(i01).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pépin, Antonin & Morel, Kevin & van der Werf, Hayo M.G., 2021. "Conventionalised vs. agroecological practices on organic vegetable farms: Investigating the influence of farm structure in a bifurcation perspective," Agricultural Systems, Elsevier, vol. 190(C).
    2. Karin Kauer & Sandra Pärnpuu & Liina Talgre & Viacheslav Eremeev & Anne Luik, 2021. "Soil Particulate and Mineral-Associated Organic Matter Increases in Organic Farming under Cover Cropping and Manure Addition," Agriculture, MDPI, vol. 11(9), pages 1-23, September.
    3. Surun, Clément & Drechsler, Martin, 2018. "Effectiveness of Tradable Permits for the Conservation of Metacommunities With Two Competing Species," Ecological Economics, Elsevier, vol. 147(C), pages 189-196.
    4. Jan Kluge & Sarah Lappöhn & Kerstin Plank, 2023. "Predictors of TFP growth in European countries," Empirica, Springer;Austrian Institute for Economic Research;Austrian Economic Association, vol. 50(1), pages 109-140, February.
    5. Navarro-Miró, D. & Iocola, I. & Persiani, A. & Blanco-Moreno, J.M. & Kristensen, H. Lakkenborg & Hefner, M. & Tamm, K. & Bender, I. & Védie, H. & Willekens, K. & Diacono, M. & Montemurro, F. & Sans, F, 2019. "Energy flows in European organic vegetable systems: Effects of the introduction and management of agroecological service crops," Energy, Elsevier, vol. 188(C).
    6. Blasi, E. & Passeri, N. & Franco, S. & Galli, A., 2016. "An ecological footprint approach to environmental–economic evaluation of farm results," Agricultural Systems, Elsevier, vol. 145(C), pages 76-82.
    7. Alexander Platzer & Thomas Nussbaumer & Thomas Karonitsch & Josef S Smolen & Daniel Aletaha, 2019. "Analysis of gene expression in rheumatoid arthritis and related conditions offers insights into sex-bias, gene biotypes and co-expression patterns," PLOS ONE, Public Library of Science, vol. 14(7), pages 1-23, July.
    8. Baccar, Mariem & Raynal, Hélène & Sekhar, Muddu & Bergez, Jacques-Eric & Willaume, Magali & Casel, Pierre & Giriraj, P. & Murthy, Sanjeeva & Ruiz, Laurent, 2023. "Dynamics of crop category choices reveal strategies and tactics used by smallholder farmers in India to cope with unreliable water availability," Agricultural Systems, Elsevier, vol. 211(C).
    9. Atanu Mukherjee & Emmanuel C. Omondi & Paul R. Hepperly & Rita Seidel & Wade P. Heller, 2020. "Impacts of Organic and Conventional Management on the Nutritional Level of Vegetables," Sustainability, MDPI, vol. 12(21), pages 1-25, October.
    10. Aditi Sahu & Kivanc Kose & Lukas Kraehenbuehl & Candice Byers & Aliya Holland & Teguru Tembo & Anthony Santella & Anabel Alfonso & Madison Li & Miguel Cordova & Melissa Gill & Christi Fox & Salvador G, 2022. "In vivo tumor immune microenvironment phenotypes correlate with inflammation and vasculature to predict immunotherapy response," Nature Communications, Nature, vol. 13(1), pages 1-19, December.
    11. Joy R. Petway & Yu-Pin Lin & Rainer F. Wunderlich, 2019. "Analyzing Opinions on Sustainable Agriculture: Toward Increasing Farmer Knowledge of Organic Practices in Taiwan-Yuanli Township," Sustainability, MDPI, vol. 11(14), pages 1-27, July.
    12. Janet MacFall & Joanna Lelekacs & Todd LeVasseur & Steve Moore & Jennifer Walker, 2015. "Toward resilient food systems through increased agricultural diversity and local sourcing in the Carolinas," Journal of Environmental Studies and Sciences, Springer;Association of Environmental Studies and Sciences, vol. 5(4), pages 608-622, December.
    13. Pabitra Joshi & Guriqbal Singh Dhillon & Yaotian Gao & Amandeep Kaur & Justin Wheeler & Jianli Chen, 2024. "An Optimal Model to Improve Genomic Prediction for Protein Content and Test Weight in a Diverse Spring Wheat Panel," Agriculture, MDPI, vol. 14(3), pages 1-16, February.
    14. Mohamed Allam & Emanuele Radicetti & Valentina Quintarelli & Verdiana Petroselli & Sara Marinari & Roberto Mancinelli, 2022. "Influence of Organic and Mineral Fertilizers on Soil Organic Carbon and Crop Productivity under Different Tillage Systems: A Meta-Analysis," Agriculture, MDPI, vol. 12(4), pages 1-19, March.
    15. Nichiforel, Liviu & Keary, Kevin & Deuffic, Philippe & Weiss, Gerhard & Thorsen, Bo Jellesmark & Winkel, Georg & Avdibegović, Mersudin & Dobšinská, Zuzana & Feliciano, Diana & Gatto, Paola & Gorriz Mi, 2018. "How private are Europe’s private forests? A comparative property rights analysis," Land Use Policy, Elsevier, vol. 76(C), pages 535-552.
    16. Roopam Shukla & Ankit Agarwal & Kamna Sachdeva & Juergen Kurths & P. K. Joshi, 2019. "Climate change perception: an analysis of climate change and risk perceptions among farmer types of Indian Western Himalayas," Climatic Change, Springer, vol. 152(1), pages 103-119, January.
    17. Cholez, Celia & Pauly, Olivier & Mahdad, Maral & Mehrabi, Sepide & Giagnocavo, Cynthia & Bijman, Jos, 2023. "Heterogeneity of inter-organizational collaborations in agrifood chain sustainability-oriented innovations," Agricultural Systems, Elsevier, vol. 212(C).
    18. Nesar Ahmed & Shirley Thompson & Giovanni M. Turchini, 2020. "Organic aquaculture productivity, environmental sustainability, and food security: insights from organic agriculture," Food Security: The Science, Sociology and Economics of Food Production and Access to Food, Springer;The International Society for Plant Pathology, vol. 12(6), pages 1253-1267, December.
    19. SIngh Verma, Juhee & Sharma, Pritee, 2019. "Potential of Organic Farming to Mitigate Climate Change and Increase Small Farmers’ Welfare," MPRA Paper 99994, University Library of Munich, Germany.
    20. Loc, Ho Huu & Park, Edward & Thu, Tran Ngoc & Diep, Nguyen Thi Hong & Can, Nguyen Trong, 2021. "An enhanced analytical framework of participatory GIS for ecosystem services assessment applied to a Ramsar wetland site in the Vietnam Mekong Delta," Ecosystem Services, Elsevier, vol. 48(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jagris:v:11:y:2021:i:5:p:445-:d:555229. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.