IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v11y2019i11p3044-d235450.html
   My bibliography  Save this article

Environmental Efficiency of Organic and Conventional Cotton in Benin

Author

Listed:
  • Régina D.C. Bonou-zin

    (Département d’économie et de sociologie appliquée à l’agriculture, Institut Agronomique et Vétérinaire Hassan II, Madinat Al Irfane, B.P. 6202, Rabat 10101, Morocco
    Département d’économie et de sociologie rurales, Faculté d’Agronomie, Université de Parakou, Parakou BP 123, Bénin)

  • Khalil Allali

    (Département d’économie et de sociologie appliquée à l’agriculture, Institut Agronomique et Vétérinaire Hassan II, Madinat Al Irfane, B.P. 6202, Rabat 10101, Morocco
    Ecole Nationale d’Agriculture de Meknès (Morocco), Département d’Economie Rurale, B.P. S/40, Meknès 50001, Morocco)

  • Aziz Fadlaoui

    (Department of Management of Natural Resources, Economics and Sociology and Quality, Regional Agricultural Research Center, Meknes, BP 578 (VN), Meknès 50000, Morocco)

Abstract

Recent years have seen an increasing awareness of the relative advantage of organic and conventional agriculture. This study aims to analyze the environmental efficiency of organic and conventional cotton in Benin. A Translog hyperbolic distance function which allows us to consider the joint production of desirable and undesirable output is used to analyze the environmental efficiency among organic and conventional cotton production farmers. The model includes factors that affect environmental efficiency. Greenhouse gas (GHG) was used as an indicator of undesirable output. Data were collected from 355 cotton producers (180 organics and 175 conventional) randomly selected in the cotton belt of Northern Benin. The results show that although organic cotton producers contribute less to GHG emission, they are environmentally inefficient compared to their conventional counterparts. Producers could improve the quantity of cotton produced by 27% and 17% while reducing emissions by 21% and 14% respectively for both organic and conventional cotton to achieve better environmental performance. However, the analysis of the shadow price revealed that organic cotton producers face lower opportunity cost than conventional producers. These results suggest that there is a need for more technical support and environmental education to improve the environmental efficiency of organic cotton in Benin.

Suggested Citation

  • Régina D.C. Bonou-zin & Khalil Allali & Aziz Fadlaoui, 2019. "Environmental Efficiency of Organic and Conventional Cotton in Benin," Sustainability, MDPI, vol. 11(11), pages 1-17, May.
  • Handle: RePEc:gam:jsusta:v:11:y:2019:i:11:p:3044-:d:235450
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/11/11/3044/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/11/11/3044/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Epiphane Sodjinou & Laurent Glin & Gian Nicolay & Silvère Tovignan & Jonas Hinvi, 2015. "Socioeconomic determinants of organic cotton adoption in Benin, West Africa," Agricultural and Food Economics, Springer;Italian Society of Agricultural Economics (SIDEA), vol. 3(1), pages 1-22, December.
    2. Jouzi, Zeynab & Azadi, Hossein & Taheri, Fatemeh & Zarafshani, Kiumars & Gebrehiwot, Kindeya & Van Passel, Steven & Lebailly, Philippe, 2017. "Organic Farming and Small-Scale Farmers: Main Opportunities and Challenges," Ecological Economics, Elsevier, vol. 132(C), pages 144-154.
    3. Cuesta, Rafael A. & Lovell, C.A. Knox & Zofío, José L., 2009. "Environmental efficiency measurement with translog distance functions: A parametric approach," Ecological Economics, Elsevier, vol. 68(8-9), pages 2232-2242, June.
    4. Tongwane, Mphethe Isaac & Moeletsi, Mokhele Edmond, 2018. "A review of greenhouse gas emissions from the agriculture sector in Africa," Agricultural Systems, Elsevier, vol. 166(C), pages 124-134.
    5. Fare, Rolf & Grosskopf, Shawna & Noh, Dong-Woon & Weber, William, 2005. "Characteristics of a polluting technology: theory and practice," Journal of Econometrics, Elsevier, vol. 126(2), pages 469-492, June.
    6. MARCHAND, Sébastien & GUO, Huanxiu, 2014. "The environmental efficiency of non-certified organic farming in China: A case study of paddy rice production," China Economic Review, Elsevier, vol. 31(C), pages 201-216.
    7. Verena Seufert & Navin Ramankutty & Jonathan A. Foley, 2012. "Comparing the yields of organic and conventional agriculture," Nature, Nature, vol. 485(7397), pages 229-232, May.
    8. Kumbhakar,Subal C. & Wang,Hung-Jen & Horncastle,Alan P., 2015. "A Practitioner's Guide to Stochastic Frontier Analysis Using Stata," Cambridge Books, Cambridge University Press, number 9781107029514, January.
    9. Kumbhakar, Subal C & Ghosh, Soumendra & McGuckin, J Thomas, 1991. "A Generalized Production Frontier Approach for Estimating Determinants of Inefficiency in U.S. Dairy Farms," Journal of Business & Economic Statistics, American Statistical Association, vol. 9(3), pages 279-286, July.
    10. Teresa Serra & Barry Goodwin, 2009. "The efficiency of Spanish arable crop organic farms, a local maximum likelihood approach," Journal of Productivity Analysis, Springer, vol. 31(2), pages 113-124, April.
    11. Kodde, David A & Palm, Franz C, 1986. "Wald Criteria for Jointly Testing Equality and Inequality Restriction s," Econometrica, Econometric Society, vol. 54(5), pages 1243-1248, September.
    12. Fare, Rolf, et al, 1989. "Multilateral Productivity Comparisons When Some Outputs Are Undesirable: A Nonparametric Approach," The Review of Economics and Statistics, MIT Press, vol. 71(1), pages 90-98, February.
    13. Subal Kumbhakar & Luis Orea & Ana Rodríguez-Álvarez & Efthymios Tsionas, 2007. "Do we estimate an input or an output distance function? An application of the mixture approach to European railways," Journal of Productivity Analysis, Springer, vol. 27(2), pages 87-100, April.
    14. Njuki, Eric & Bravo-Ureta, Boris E. & Mukherjee, Deep, 2016. "The Good and the Bad: Environmental Efficiency in Northeastern U.S. Dairy Farming," Agricultural and Resource Economics Review, Cambridge University Press, vol. 45(1), pages 22-43, April.
    15. Battese, G E & Coelli, T J, 1995. "A Model for Technical Inefficiency Effects in a Stochastic Frontier Production Function for Panel Data," Empirical Economics, Springer, vol. 20(2), pages 325-332.
    16. Ndambiri, H. K. & Ritho, C. & Mbogoh, Stephen G. & Nyangweso, P.M. & Ng’ang’a, S. I. & Muiruri, E. J. & Kipsat, Mary J. & Kubowon, P. C. & Cherotwo, F. H. & Omboto, P. I., 2012. "Analysis of Farmers’ Perceptions of the Effects of Climate Change in Kenya: The Case of Kyuso District," 2012 Eighth AFMA Congress, November 25-29, 2012, Nairobi, Kenya 159405, African Farm Management Association (AFMA).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Baha, Michael & Henningsen, Arne & Elleby, Christian & Mlay, Gilead, 2021. "Competitiveness of Currently Practiced and Alternative Cotton Production Methods in Meatu District, Tanzania," 2021 Conference, August 17-31, 2021, Virtual 315901, International Association of Agricultural Economists.
    2. Jessica Cuartero & Onurcan Özbolat & Virginia Sánchez-Navarro & Marcos Egea-Cortines & Raúl Zornoza & Loredana Canfora & Luigi Orrù & Jose Antonio Pascual & Juana-María Vivo & Margarita Ros, 2021. "Changes in Bacterial and Fungal Soil Communities in Long-Term Organic Cropping Systems," Agriculture, MDPI, vol. 11(5), pages 1-19, May.
    3. Imane Bounadi & Khalil Allali & Aziz Fadlaoui & Mohammed Dehhaoui, 2023. "Water Pollution Abatement in Olive Oil Industry in Morocco: Cost Estimates and Policy Implications," Sustainability, MDPI, vol. 15(5), pages 1-19, February.
    4. Chabi Simin Najib Dafia & Fei Chen & Peter Davis Sumo, 2022. "Guideline and Strategies of Textile Industry on the Sustainable Development of Benin," Sustainability, MDPI, vol. 14(19), pages 1-18, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Imane Bounadi & Khalil Allali & Aziz Fadlaoui & Mohammed Dehhaoui, 2023. "Water Pollution Abatement in Olive Oil Industry in Morocco: Cost Estimates and Policy Implications," Sustainability, MDPI, vol. 15(5), pages 1-19, February.
    2. Orea, Luis, 2019. "The Econometric Measurement of Firms’ Efficiency," Efficiency Series Papers 2019/02, University of Oviedo, Department of Economics, Oviedo Efficiency Group (OEG).
    3. Efecan, Volkan & Temiz, İzzettin, 2023. "Assessing the technical efficiency of container ports based on a non-monotonic inefficiency effects model," Utilities Policy, Elsevier, vol. 81(C).
    4. Huang, Wei & Bruemmer, Bernhard & Huntsinger, Lynn, 2016. "Incorporating measures of grassland productivity into efficiency estimates for livestock grazing on the Qinghai-Tibetan Plateau in China," Ecological Economics, Elsevier, vol. 122(C), pages 1-11.
    5. Yung-Hsiang Lu & Ku-Hsieh Chen & Jen-Chi Cheng & Chih-Chun Chen & Sian-Yuan Li, 2019. "Analysis of Environmental Productivity on Fossil Fuel Power Plants in the U.S," Sustainability, MDPI, vol. 11(24), pages 1-27, December.
    6. Vogel, Everton & Dalheimer, Bernhard & Beber, Caetano Luiz & de Mori, Claudia & Palhares, Julio Cesar Pascale & Novo, André Luiz Monteiro, 2023. "Environmental efficiency and methane abatement costs of dairy farms from Minas Gerais, Brazil," Food Policy, Elsevier, vol. 119(C).
    7. Ather Hassan Dar & Somesh Kumar Mathur & Sila Mishra, 2021. "The Efficiency of Indian Banks: A DEA, Malmquist and SFA Analysis with Bad Output," Journal of Quantitative Economics, Springer;The Indian Econometric Society (TIES), vol. 19(4), pages 653-701, December.
    8. Rouf, Abdur, 2015. "Conventional vs Natural Flood Control and Drainage Managements in a Tidal Coastal Zone: An Evaluation from a Productive Efficiency Perspective," 89th Annual Conference, April 13-15, 2015, Warwick University, Coventry, UK 256023, Agricultural Economics Society.
    9. Adewale Henry Adenuga & John Davis & George Hutchinson & Trevor Donnellan & Myles Patton, 2019. "Environmental Efficiency and Pollution Costs of Nitrogen Surplus in Dairy Farms: A Parametric Hyperbolic Technology Distance Function Approach," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 74(3), pages 1273-1298, November.
    10. Ajayi, Victor & Weyman-Jones, Tom, 2021. "State-level electricity generation efficiency: Do restructuring and regulatory institutions matter in the US?," Energy Economics, Elsevier, vol. 104(C).
    11. Tom Kompas & Tuong Nhu Che & R. Quentin Grafton, 2004. "Technical efficiency effects of input controls: evidence from Australia's banana prawn fishery," Applied Economics, Taylor & Francis Journals, vol. 36(15), pages 1631-1641.
    12. Daniel Solís & Boris E. Bravo‐Ureta & Ricardo E. Quiroga, 2009. "Technical Efficiency among Peasant Farmers Participating in Natural Resource Management Programmes in Central America," Journal of Agricultural Economics, Wiley Blackwell, vol. 60(1), pages 202-219, February.
    13. Subal C. Kumbhakar & Christopher F. Parmeter & Valentin Zelenyuk, 2022. "Stochastic Frontier Analysis: Foundations and Advances I," Springer Books, in: Subhash C. Ray & Robert G. Chambers & Subal C. Kumbhakar (ed.), Handbook of Production Economics, chapter 8, pages 331-370, Springer.
    14. Roy, Manish & Mazumder, Ritwik, 2016. "Technical Efficiency of Fish Catch in Traditional Fishing: A Study in Southern Assam," Journal of Regional Development and Planning, Rajarshi Majumder, vol. 5(1), pages 55-68.
    15. Edward Ebo ONUMAH & Bernhard BRÜMMER & Gabriele HÖRSTGEN-SCHWARK, 2010. "Productivity of the hired and family labour and determinants of technical inefficiency in Ghana's fish farms," Agricultural Economics, Czech Academy of Agricultural Sciences, vol. 56(2), pages 79-88.
    16. Roberto Furesi & Fabio Madau & Pietro Pulina, 2013. "Technical efficiency in the sheep dairy industry: an application on the Sardinian (Italy) sector," Agricultural and Food Economics, Springer;Italian Society of Agricultural Economics (SIDEA), vol. 1(1), pages 1-11, December.
    17. Magambo, Isaiah & Dikgang, Johane & Gelo, Dambala & Tregenna, Fiona, 2021. "Environmental and Technical Efficiency in Large Gold Mines in Developing Countries," MPRA Paper 108068, University Library of Munich, Germany.
    18. Rahman, Sanzidur, 2003. "Profit efficiency among Bangladeshi rice farmers," Food Policy, Elsevier, vol. 28(5-6), pages 487-503.
    19. Mastromarco, Camilla & Ghosh, Sucharita, 2009. "Foreign Capital, Human Capital, and Efficiency: A Stochastic Frontier Analysis for Developing Countries," World Development, Elsevier, vol. 37(2), pages 489-502, February.
    20. Llorca, Manuel & Rodriguez-Alvarez, Ana, 2024. "Economic, environmental, and energy equity convergence: Evidence of a multi-speed Europe?," Ecological Economics, Elsevier, vol. 219(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:11:y:2019:i:11:p:3044-:d:235450. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.