IDEAS home Printed from https://ideas.repec.org/a/gam/jagris/v11y2021i5p419-d549442.html
   My bibliography  Save this article

Strigolactone Alleviates Herbicide Toxicity via Maintaining Antioxidant Homeostasis in Watermelon ( Citrullus lanatus )

Author

Listed:
  • Abid Ali

    (Laboratory of Germplasm Innovation and Molecular Breeding, Department of Horticulture, Zhejiang University, Hangzhou 310029, China
    Hainan Institute of Zhejiang University, Yazhou Bay, Sanya 572024, China
    Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Ministry of Agriculture, Hangzhou 310058, China)

  • Guy Kateta Malangisha

    (Laboratory of Germplasm Innovation and Molecular Breeding, Department of Horticulture, Zhejiang University, Hangzhou 310029, China
    Faculté des Sciences Agronomiques, Université de Lubumbashi/UNILU, Lubumbashi du Congo/BP1825, Democratic Republic of the Congo)

  • Haiyang Yang

    (Laboratory of Germplasm Innovation and Molecular Breeding, Department of Horticulture, Zhejiang University, Hangzhou 310029, China)

  • Chen Li

    (Laboratory of Germplasm Innovation and Molecular Breeding, Department of Horticulture, Zhejiang University, Hangzhou 310029, China)

  • Chi Wang

    (Agriculture, Rural Development and Water Conservancy Bureau of Wenling, Wenling 317500, China)

  • Yubin Yang

    (Agriculture, Rural Development and Water Conservancy Bureau of Wenling, Wenling 317500, China)

  • Ahmed Mahmoud

    (Laboratory of Germplasm Innovation and Molecular Breeding, Department of Horticulture, Zhejiang University, Hangzhou 310029, China)

  • Jehanzeb Khan

    (Laboratory of Germplasm Innovation and Molecular Breeding, Department of Horticulture, Zhejiang University, Hangzhou 310029, China)

  • Jinghua Yang

    (Laboratory of Germplasm Innovation and Molecular Breeding, Department of Horticulture, Zhejiang University, Hangzhou 310029, China
    Hainan Institute of Zhejiang University, Yazhou Bay, Sanya 572024, China
    Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Ministry of Agriculture, Hangzhou 310058, China)

  • Zhongyuan Hu

    (Laboratory of Germplasm Innovation and Molecular Breeding, Department of Horticulture, Zhejiang University, Hangzhou 310029, China
    Hainan Institute of Zhejiang University, Yazhou Bay, Sanya 572024, China
    Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Ministry of Agriculture, Hangzhou 310058, China)

  • Mingfang Zhang

    (Laboratory of Germplasm Innovation and Molecular Breeding, Department of Horticulture, Zhejiang University, Hangzhou 310029, China
    Hainan Institute of Zhejiang University, Yazhou Bay, Sanya 572024, China
    Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Ministry of Agriculture, Hangzhou 310058, China)

Abstract

Strigolactone (SL) plays essential roles in regulating plant growth, development, and stress response. This study was conducted to evaluate the effect of exogenous SL on watermelon resistance against herbicides penoxsulam (PXL) and bensulfuron-methyl (BSM). These herbicides were found to negatively impact watermelon root growth and photosynthetic pigments, probably due to the ultrastructural damage and cell death in leaf and root tissues under herbicide stresses. The activation of SL-related gene expression suggested that the SL pathway may mitigate herbicide toxicity in watermelon. The exogenous SL dose-dependently reversed the PXL- or BSM-induced antioxidant activity, suggesting that SL may participate in maintaining antioxidant enzyme homeostasis under herbicide stresses. The up-regulation of herbicide metabolization and detoxification-related genes (cytochrome P450 and acetolactate synthase) by exogenous SL also in part explained how this phytohormone alleviates herbicide toxicity in watermelon. Our findings will provide valuable information underlying the regulatory effects of SL on herbicide tolerance in Cucurbitaceae crops.

Suggested Citation

  • Abid Ali & Guy Kateta Malangisha & Haiyang Yang & Chen Li & Chi Wang & Yubin Yang & Ahmed Mahmoud & Jehanzeb Khan & Jinghua Yang & Zhongyuan Hu & Mingfang Zhang, 2021. "Strigolactone Alleviates Herbicide Toxicity via Maintaining Antioxidant Homeostasis in Watermelon ( Citrullus lanatus )," Agriculture, MDPI, vol. 11(5), pages 1-19, May.
  • Handle: RePEc:gam:jagris:v:11:y:2021:i:5:p:419-:d:549442
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2077-0472/11/5/419/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2077-0472/11/5/419/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Kohki Akiyama & Ken-ichi Matsuzaki & Hideo Hayashi, 2005. "Plant sesquiterpenes induce hyphal branching in arbuscular mycorrhizal fungi," Nature, Nature, vol. 435(7043), pages 824-827, June.
    2. Victoria Gomez-Roldan & Soraya Fermas & Philip B. Brewer & Virginie Puech-Pagès & Elizabeth A. Dun & Jean-Paul Pillot & Fabien Letisse & Radoslava Matusova & Saida Danoun & Jean-Charles Portais & Harr, 2008. "Strigolactone inhibition of shoot branching," Nature, Nature, vol. 455(7210), pages 189-194, September.
    3. Ikram Blilou & Jian Xu & Marjolein Wildwater & Viola Willemsen & Ivan Paponov & Jiří Friml & Renze Heidstra & Mitsuhiro Aida & Klaus Palme & Ben Scheres, 2005. "The PIN auxin efflux facilitator network controls growth and patterning in Arabidopsis roots," Nature, Nature, vol. 433(7021), pages 39-44, January.
    4. Mikihisa Umehara & Atsushi Hanada & Satoko Yoshida & Kohki Akiyama & Tomotsugu Arite & Noriko Takeda-Kamiya & Hiroshi Magome & Yuji Kamiya & Ken Shirasu & Koichi Yoneyama & Junko Kyozuka & Shinjiro Ya, 2008. "Inhibition of shoot branching by new terpenoid plant hormones," Nature, Nature, vol. 455(7210), pages 195-200, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jinying Cui & Noriko Nishide & Kiyoshi Mashiguchi & Kana Kuroha & Masayuki Miya & Kazuhiko Sugimoto & Jun-Ichi Itoh & Shinjiro Yamaguchi & Takeshi Izawa, 2023. "Fertilization controls tiller numbers via transcriptional regulation of a MAX1-like gene in rice cultivation," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    2. Kyoichi Kodama & Mélanie K. Rich & Akiyoshi Yoda & Shota Shimazaki & Xiaonan Xie & Kohki Akiyama & Yohei Mizuno & Aino Komatsu & Yi Luo & Hidemasa Suzuki & Hiromu Kameoka & Cyril Libourel & Jean Kelle, 2022. "An ancestral function of strigolactones as symbiotic rhizosphere signals," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    3. Aino Komatsu & Mizuki Fujibayashi & Kazato Kumagai & Hidemasa Suzuki & Yuki Hata & Yumiko Takebayashi & Mikiko Kojima & Hitoshi Sakakibara & Junko Kyozuka, 2025. "KAI2-dependent signaling controls vegetative reproduction in Marchantia polymorpha through activation of LOG-mediated cytokinin synthesis," Nature Communications, Nature, vol. 16(1), pages 1-13, December.
    4. Debatosh Das & Kartikye Varshney & Satoshi Ogawa & Salar Torabi & Regine Hüttl & David C. Nelson & Caroline Gutjahr, 2025. "Ethylene promotes SMAX1 accumulation to inhibit arbuscular mycorrhiza symbiosis," Nature Communications, Nature, vol. 16(1), pages 1-17, December.
    5. Satoshi Ogawa & Songkui Cui & Alexandra R. F. White & David C. Nelson & Satoko Yoshida & Ken Shirasu, 2022. "Strigolactones are chemoattractants for host tropism in Orobanchaceae parasitic plants," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    6. repec:caa:jnlcjg:v:preprint:id:88-2023-cjgpb is not listed on IDEAS
    7. Wenlong Yang & Ameer Ahmed Mirbahar & Muhammad Shoaib & Xueyuan Lou & Linhe Sun & Jiazhu Sun & Kehui Zhan & Aimin Zhang, 2022. "The Carotenoid Cleavage Dioxygenase Gene CCD7-B , at Large, Is Associated with Tillering in Common Wheat," Agriculture, MDPI, vol. 12(2), pages 1-14, February.
    8. Malathy Palayam & Linyi Yan & Ugrappa Nagalakshmi & Amelia K. Gilio & David Cornu & François-Didier Boyer & Savithramma P. Dinesh-Kumar & Nitzan Shabek, 2024. "Structural insights into strigolactone catabolism by carboxylesterases reveal a conserved conformational regulation," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    9. Adam Conn & Arjun Chandrasekhar & Martin van Rongen & Ottoline Leyser & Joanne Chory & Saket Navlakha, 2019. "Network trade-offs and homeostasis in Arabidopsis shoot architectures," PLOS Computational Biology, Public Library of Science, vol. 15(9), pages 1-19, September.
    10. Xiuhua CHEN & Rui ZHANG & Fengling WANG, 2017. "Transgenic Bt cotton inhibited arbuscular mycorrhizal fungus differentiation and colonization," Plant, Soil and Environment, Czech Academy of Agricultural Sciences, vol. 63(2), pages 62-69.
    11. Yiren Qing & Yaoming Li & Lizhang Xu & Zheng Ma, 2021. "Screen Oilseed Rape ( Brassica napus ) Suitable for Low-Loss Mechanized Harvesting," Agriculture, MDPI, vol. 11(6), pages 1-13, May.
    12. Muhammad Usman Ali & Zulqarnain & Muhammad Saad Jamil & Muhammad Akif ur Rehman & Muhammad Abdur Rehman & Zahid Hussain Shah & Hameed Alsamadany, 2019. "Metabolic and Biochemical Profiling of Phenolic Compound and their Biosynthesis in Oil Crops," Biomedical Journal of Scientific & Technical Research, Biomedical Research Network+, LLC, vol. 18(3), pages 13652-13661, May.
    13. Pankaj Bhatt & Amit Verma & Shulbhi Verma & Md. Shahbaz Anwar & Parteek Prasher & Harish Mudila & Shaohua Chen, 2020. "Understanding Phytomicrobiome: A Potential Reservoir for Better Crop Management," Sustainability, MDPI, vol. 12(13), pages 1-20, July.
    14. Amrita Gupta & Udai B. Singh & Pramod K. Sahu & Surinder Paul & Adarsh Kumar & Deepti Malviya & Shailendra Singh & Pandiyan Kuppusamy & Prakash Singh & Diby Paul & Jai P. Rai & Harsh V. Singh & Madhab, 2022. "Linking Soil Microbial Diversity to Modern Agriculture Practices: A Review," IJERPH, MDPI, vol. 19(5), pages 1-29, March.
    15. Shanshan Li & Hualiang He & Lin Qiu & Qiao Gao & Youzhi Li & Wenbing Ding, 2023. "Down-Regulation of Strigolactone Biosynthesis Gene D17 Alters the VOC Content and Increases Sogatella furcifera Infectivity in Rice," Agriculture, MDPI, vol. 13(4), pages 1-12, April.
    16. Muhammad Ahsan & Hira Zulfiqar & Muhammad Ansar Farooq & Sajjad Ali & Aasma Tufail & Shamsa Kanwal & Muhammad Rashid Shaheen & Mateen Sajid & Hera Gul & Aftab Jamal & Muhammad Farhan Saeed & Roberto M, 2022. "Strigolactone (GR24) Application Positively Regulates Photosynthetic Attributes, Stress-Related Metabolites and Antioxidant Enzymatic Activities of Ornamental Sunflower ( Helianthus annuus cv. Vincent," Agriculture, MDPI, vol. 13(1), pages 1-17, December.
    17. Yao Guo & Juntao Yang & Haojie Wang & Junhua Li & Bin Liu & Haozhe Min & Yongbing Zhang & Jiancai Mao, 2024. "Transcriptomic analysis of melon with different Phelipanche aegyptiaca resistance," Plant Protection Science, Czech Academy of Agricultural Sciences, vol. 60(4), pages 380-392.
    18. Mamta Dhiman & Lakshika Sharma & Prashant Kaushik & Abhijeet Singh & Madan Mohan Sharma, 2022. "Mycorrhiza: An Ecofriendly Bio-Tool for Better Survival of Plants in Nature," Sustainability, MDPI, vol. 14(16), pages 1-25, August.
    19. Veresoglou, Stavros D. & Halley, John M., 2012. "A model that explains diversity patterns of arbuscular mycorrhizas," Ecological Modelling, Elsevier, vol. 231(C), pages 146-152.
    20. Qirui Feng & Yu Luo & Mu Liang & Yingui Cao & LingShuang Wang & Can Liu & Xiaoyong Zhang & Lanyang Ren & Yongfeng Wang & Daojie Wang & Yantao Zhu & Yanfeng Zhang & Bo Xiao & Nannan Li, 2025. "Rhizobacteria protective hydrogel to promote plant growth and adaption to acidic soil," Nature Communications, Nature, vol. 16(1), pages 1-16, December.
    21. Abdul Saboor & Muhammad Arif Ali & Niaz Ahmed & Milan Skalicky & Subhan Danish & Shah Fahad & Fahmy Hassan & Mohamed M. Hassan & Marian Brestic & Ayman EL Sabagh & Rahul Datta, 2021. "Biofertilizer-Based Zinc Application Enhances Maize Growth, Gas Exchange Attributes, and Yield in Zinc-Deficient Soil," Agriculture, MDPI, vol. 11(4), pages 1-20, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jagris:v:11:y:2021:i:5:p:419-:d:549442. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.