IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v12y2020i13p5446-d381003.html
   My bibliography  Save this article

Understanding Phytomicrobiome: A Potential Reservoir for Better Crop Management

Author

Listed:
  • Pankaj Bhatt

    (State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China
    Both authors contributed equally to this manuscript.)

  • Amit Verma

    (Department of Biochemistry, College of Basic Science and Humanities, SD Agricultural University, Gujarat 385506, India
    Both authors contributed equally to this manuscript.)

  • Shulbhi Verma

    (Department of Biotechnology, College of Basic Science and Humanities, SD Agricultural University, Gujarat 385506, India)

  • Md. Shahbaz Anwar

    (Dum Dum Motijheel College, Microbiology Department, Kolkata, West Bengal 700074, India)

  • Parteek Prasher

    (Department of Chemistry, University of Petroleum and Energy Studies, Dehradun, Uttarakhand 248007, India)

  • Harish Mudila

    (Department of Chemistry, Lovely Professional University, Phagwara, Punjab 144411, India)

  • Shaohua Chen

    (State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China)

Abstract

Recent crop production studies have aimed at an increase in the biotic and abiotic tolerance of plant communities, along with increased nutrient availability and crop yields. This can be achieved in various ways, but one of the emerging approaches is to understand the phytomicrobiome structure and associated chemical communications. The phytomicrobiome was characterized with the advent of high-throughput techniques. Its composition and chemical signaling phenomena have been revealed, leading the way for “rhizosphere engineering”. In addition to the above, phytomicrobiome studies have paved the way to best tackling soil contamination with various anthropogenic activities. Agricultural lands have been found to be unbalanced for crop production. Due to the intense application of agricultural chemicals such as herbicides, fungicides, insecticides, fertilizers, etc., which can only be rejuvenated efficiently through detailed studies on the phytomicrobiome component, the phytomicrobiome has recently emerged as a primary plant trait that affects crop production. The phytomicrobiome also acts as an essential modifying factor in plant root exudation and vice versa, resulting in better plant health and crop yield both in terms of quantity and quality. Not only supporting better plant growth, phytomicrobiome members are involved in the degradation of toxic materials, alleviating the stress conditions that adversely affect plant development. Thus, the present review compiles the progress in understanding phytomicrobiome relationships and their application in achieving the goal of sustainable agriculture.

Suggested Citation

  • Pankaj Bhatt & Amit Verma & Shulbhi Verma & Md. Shahbaz Anwar & Parteek Prasher & Harish Mudila & Shaohua Chen, 2020. "Understanding Phytomicrobiome: A Potential Reservoir for Better Crop Management," Sustainability, MDPI, vol. 12(13), pages 1-20, July.
  • Handle: RePEc:gam:jsusta:v:12:y:2020:i:13:p:5446-:d:381003
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/12/13/5446/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/12/13/5446/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Kohki Akiyama & Ken-ichi Matsuzaki & Hideo Hayashi, 2005. "Plant sesquiterpenes induce hyphal branching in arbuscular mycorrhizal fungi," Nature, Nature, vol. 435(7043), pages 824-827, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Javed Ali & Xiukang Wang & Mazhar Rafique & Iftikhar Ahmad & Sajid Fiaz & Muhammad Farooq Hussain Munis & Hassan Javed Chaudhary, 2021. "Phytoremediation of Cadmium Contaminated Soil Using Sesbania sesban L. in Association with Bacillus anthracis PM21: A Biochemical Analysis," Sustainability, MDPI, vol. 13(24), pages 1-19, December.
    2. Arvind Kumar Shukla & Sanjib Kumar Behera & Chandra Prakash & Ashok Kumar Patra & Ch Srinivasa Rao & Suresh Kumar Chaudhari & Soumitra Das & Anil Kumar Singh & Andrew Green, 2021. "Assessing Multi-Micronutrients Deficiency in Agricultural Soils of India," Sustainability, MDPI, vol. 13(16), pages 1-19, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xiuhua CHEN & Rui ZHANG & Fengling WANG, 2017. "Transgenic Bt cotton inhibited arbuscular mycorrhizal fungus differentiation and colonization," Plant, Soil and Environment, Czech Academy of Agricultural Sciences, vol. 63(2), pages 62-69.
    2. Jinying Cui & Noriko Nishide & Kiyoshi Mashiguchi & Kana Kuroha & Masayuki Miya & Kazuhiko Sugimoto & Jun-Ichi Itoh & Shinjiro Yamaguchi & Takeshi Izawa, 2023. "Fertilization controls tiller numbers via transcriptional regulation of a MAX1-like gene in rice cultivation," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    3. Abdul Saboor & Muhammad Arif Ali & Niaz Ahmed & Milan Skalicky & Subhan Danish & Shah Fahad & Fahmy Hassan & Mohamed M. Hassan & Marian Brestic & Ayman EL Sabagh & Rahul Datta, 2021. "Biofertilizer-Based Zinc Application Enhances Maize Growth, Gas Exchange Attributes, and Yield in Zinc-Deficient Soil," Agriculture, MDPI, vol. 11(4), pages 1-20, April.
    4. Mohd. Kamran Khan & Anamika Pandey & Mehmet Hamurcu & Tomáš Vyhnánek & Sajad Majeed Zargar & Abdullah Kahraman & Ali Topal & Sait Gezgin, 2024. "Exploring strigolactones for inducing abiotic stress tolerance in plants," Czech Journal of Genetics and Plant Breeding, Czech Academy of Agricultural Sciences, vol. 60(2), pages 55-69.
    5. Amrita Gupta & Udai B. Singh & Pramod K. Sahu & Surinder Paul & Adarsh Kumar & Deepti Malviya & Shailendra Singh & Pandiyan Kuppusamy & Prakash Singh & Diby Paul & Jai P. Rai & Harsh V. Singh & Madhab, 2022. "Linking Soil Microbial Diversity to Modern Agriculture Practices: A Review," IJERPH, MDPI, vol. 19(5), pages 1-29, March.
    6. Alan W Bowsher & Rifhat Ali & Scott A Harding & Chung-Jui Tsai & Lisa A Donovan, 2016. "Evolutionary Divergences in Root Exudate Composition among Ecologically-Contrasting Helianthus Species," PLOS ONE, Public Library of Science, vol. 11(1), pages 1-16, January.
    7. Mohammad Faisal & Mohammad Faizan & Sadia Haque Tonny & Vishnu D. Rajput & Tatiana Minkina & Abdulrahman A. Alatar & Ranjith Pathirana, 2023. "Strigolactone-Mediated Mitigation of Negative Effects of Salinity Stress in Solanum lycopersicum through Reducing the Oxidative Damage," Sustainability, MDPI, vol. 15(7), pages 1-13, March.
    8. Kyoichi Kodama & Mélanie K. Rich & Akiyoshi Yoda & Shota Shimazaki & Xiaonan Xie & Kohki Akiyama & Yohei Mizuno & Aino Komatsu & Yi Luo & Hidemasa Suzuki & Hiromu Kameoka & Cyril Libourel & Jean Kelle, 2022. "An ancestral function of strigolactones as symbiotic rhizosphere signals," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    9. Satoshi Ogawa & Songkui Cui & Alexandra R. F. White & David C. Nelson & Satoko Yoshida & Ken Shirasu, 2022. "Strigolactones are chemoattractants for host tropism in Orobanchaceae parasitic plants," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    10. repec:caa:jnlcjg:v:preprint:id:88-2023-cjgpb is not listed on IDEAS
    11. Mamta Dhiman & Lakshika Sharma & Prashant Kaushik & Abhijeet Singh & Madan Mohan Sharma, 2022. "Mycorrhiza: An Ecofriendly Bio-Tool for Better Survival of Plants in Nature," Sustainability, MDPI, vol. 14(16), pages 1-25, August.
    12. Abid Ali & Guy Kateta Malangisha & Haiyang Yang & Chen Li & Chi Wang & Yubin Yang & Ahmed Mahmoud & Jehanzeb Khan & Jinghua Yang & Zhongyuan Hu & Mingfang Zhang, 2021. "Strigolactone Alleviates Herbicide Toxicity via Maintaining Antioxidant Homeostasis in Watermelon ( Citrullus lanatus )," Agriculture, MDPI, vol. 11(5), pages 1-19, May.
    13. Veresoglou, Stavros D. & Halley, John M., 2012. "A model that explains diversity patterns of arbuscular mycorrhizas," Ecological Modelling, Elsevier, vol. 231(C), pages 146-152.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:12:y:2020:i:13:p:5446-:d:381003. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.