IDEAS home Printed from https://ideas.repec.org/a/plo/pcbi00/1007325.html
   My bibliography  Save this article

Network trade-offs and homeostasis in Arabidopsis shoot architectures

Author

Listed:
  • Adam Conn
  • Arjun Chandrasekhar
  • Martin van Rongen
  • Ottoline Leyser
  • Joanne Chory
  • Saket Navlakha

Abstract

Understanding the optimization objectives that shape shoot architectures remains a critical problem in plant biology. Here, we performed 3D scanning of 152 Arabidopsis shoot architectures, including wildtype and 10 mutant strains, and we uncovered a design principle that describes how architectures make trade-offs between competing objectives. First, we used graph-theoretic analysis to show that Arabidopsis shoot architectures strike a Pareto optimal that can be captured as maximizing performance in transporting nutrients and minimizing costs in building the architecture. Second, we identify small sets of genes that can be mutated to shift the weight prioritizing one objective over the other. Third, we show that this prioritization weight feature is significantly less variable across replicates of the same genotype compared to other common plant traits (e.g., number of rosette leaves, total volume occupied). This suggests that this feature is a robust descriptor of a genotype, and that local variability in structure may be compensated for globally in a homeostatic manner. Overall, our work provides a framework to understand optimization trade-offs made by shoot architectures and provides evidence that these trade-offs can be modified genetically, which may aid plant breeding and selection efforts.Author summary: In both engineered and biological systems, there is often no single structure that performs optimally on all tasks. For example, a transport system that can very quickly shuttle people to and from work will often not be very cheap to build, and vice-versa. Thus, trade-offs are born, and it is natural to ask how well evolution has resolved trade-offs between competing tasks. Here, we use 3D laser scanning and network analysis to show that Arabidopsis plant architectures make Pareto optimal trade-offs, which means that improving upon one task requires a sacrifice in the other task. In other words, an architecture that performs better on both tasks cannot be built. We also identify a small set of genes that can change how the architecture prioritizes one task versus the other, which may allow for better crop design in the future. Finally, we show that two replicate architectures that look visually diverse (e.g., variation in size, number of leaves, number of branches, etc.) often prioritize each task similarly. This suggests that despite local variability in the architecture, there may be a homeostatic drive to maintain globally balanced trade-offs.

Suggested Citation

  • Adam Conn & Arjun Chandrasekhar & Martin van Rongen & Ottoline Leyser & Joanne Chory & Saket Navlakha, 2019. "Network trade-offs and homeostasis in Arabidopsis shoot architectures," PLOS Computational Biology, Public Library of Science, vol. 15(9), pages 1-19, September.
  • Handle: RePEc:plo:pcbi00:1007325
    DOI: 10.1371/journal.pcbi.1007325
    as

    Download full text from publisher

    File URL: https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1007325
    Download Restriction: no

    File URL: https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.1007325&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pcbi.1007325?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Victoria Gomez-Roldan & Soraya Fermas & Philip B. Brewer & Virginie Puech-Pagès & Elizabeth A. Dun & Jean-Paul Pillot & Fabien Letisse & Radoslava Matusova & Saida Danoun & Jean-Charles Portais & Harr, 2008. "Strigolactone inhibition of shoot branching," Nature, Nature, vol. 455(7210), pages 189-194, September.
    2. Ikram Blilou & Jian Xu & Marjolein Wildwater & Viola Willemsen & Ivan Paponov & Jiří Friml & Renze Heidstra & Mitsuhiro Aida & Klaus Palme & Ben Scheres, 2005. "The PIN auxin efflux facilitator network controls growth and patterning in Arabidopsis roots," Nature, Nature, vol. 433(7021), pages 39-44, January.
    3. Geoffrey B. West & James H. Brown & Brian J. Enquist, 1999. "The Fourth Dimension of Life: Fractal Geometry and Allometric Scaling of Organisms," Working Papers 99-07-047, Santa Fe Institute.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Abid Ali & Guy Kateta Malangisha & Haiyang Yang & Chen Li & Chi Wang & Yubin Yang & Ahmed Mahmoud & Jehanzeb Khan & Jinghua Yang & Zhongyuan Hu & Mingfang Zhang, 2021. "Strigolactone Alleviates Herbicide Toxicity via Maintaining Antioxidant Homeostasis in Watermelon ( Citrullus lanatus )," Agriculture, MDPI, vol. 11(5), pages 1-19, May.
    2. Elliott, Robert J.R. & Sun, Puyang & Xu, Qiqin, 2015. "Energy distribution and economic growth: An empirical test for China," Energy Economics, Elsevier, vol. 48(C), pages 24-31.
    3. Chen, Yanguang, 2014. "An allometric scaling relation based on logistic growth of cities," Chaos, Solitons & Fractals, Elsevier, vol. 65(C), pages 65-77.
    4. Wenlong Yang & Ameer Ahmed Mirbahar & Muhammad Shoaib & Xueyuan Lou & Linhe Sun & Jiazhu Sun & Kehui Zhan & Aimin Zhang, 2022. "The Carotenoid Cleavage Dioxygenase Gene CCD7-B , at Large, Is Associated with Tillering in Common Wheat," Agriculture, MDPI, vol. 12(2), pages 1-14, February.
    5. Scott G Ortman & José Lobo & Michael E Smith, 2020. "Cities: Complexity, theory and history," PLOS ONE, Public Library of Science, vol. 15(12), pages 1-24, December.
    6. He, Ji-Huan & Liu, Jun-Fang, 2009. "Allometric scaling laws in biology and physics," Chaos, Solitons & Fractals, Elsevier, vol. 41(4), pages 1836-1838.
    7. Lia Papadopoulos & Pablo Blinder & Henrik Ronellenfitsch & Florian Klimm & Eleni Katifori & David Kleinfeld & Danielle S Bassett, 2018. "Comparing two classes of biological distribution systems using network analysis," PLOS Computational Biology, Public Library of Science, vol. 14(9), pages 1-31, September.
    8. Yiren Qing & Yaoming Li & Lizhang Xu & Zheng Ma, 2021. "Screen Oilseed Rape ( Brassica napus ) Suitable for Low-Loss Mechanized Harvesting," Agriculture, MDPI, vol. 11(6), pages 1-13, May.
    9. Brolly, Matthew & Woodhouse, Iain H., 2012. "A “Matchstick Model” of microwave backscatter from a forest," Ecological Modelling, Elsevier, vol. 237, pages 74-87.
    10. Jinying Cui & Noriko Nishide & Kiyoshi Mashiguchi & Kana Kuroha & Masayuki Miya & Kazuhiko Sugimoto & Jun-Ichi Itoh & Shinjiro Yamaguchi & Takeshi Izawa, 2023. "Fertilization controls tiller numbers via transcriptional regulation of a MAX1-like gene in rice cultivation," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    11. Dalgaard, Carl-Johan & Strulik, Holger, 2011. "Energy distribution and economic growth," Resource and Energy Economics, Elsevier, vol. 33(4), pages 782-797.
    12. Husmann, Kai & Möhring, Bernhard, 2017. "Modelling the economically viable wood in the crown of European beech trees," Forest Policy and Economics, Elsevier, vol. 78(C), pages 67-77.
    13. He, Ji-Huan, 2006. "An allometric scaling law between gray matter and white matter of cerebral cortex," Chaos, Solitons & Fractals, Elsevier, vol. 27(4), pages 864-867.
    14. GANIO-MEGO, Joe, 2022. "The instant and historical Preston curves: allometry quarter-power law valid for the humans," SocArXiv y8rbt, Center for Open Science.
    15. Tao, Yong & Lin, Li & Wang, Hanjie & Hou, Chen, 2023. "Superlinear growth and the fossil fuel energy sustainability dilemma: Evidence from six continents," Structural Change and Economic Dynamics, Elsevier, vol. 66(C), pages 39-51.
    16. Jiao Li & Yongsheng Qian & Junwei Zeng & Fan Yin & Leipeng Zhu & Xiaoping Guang, 2020. "Research on the Influence of a High-Speed Railway on the Spatial Structure of the Western Urban Agglomeration Based on Fractal Theory—Taking the Chengdu–Chongqing Urban Agglomeration as an Example," Sustainability, MDPI, vol. 12(18), pages 1-13, September.
    17. Chen, Yanguang, 2017. "Multi-scaling allometric analysis for urban and regional development," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 465(C), pages 673-689.
    18. Lang, Wei & Long, Ying & Chen, Tingting & Li, Xun, 2019. "Reinvestigating China’s urbanization through the lens of allometric scaling," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 525(C), pages 1429-1439.
    19. Torres-Rojo, Juan Manuel & Francisco-Cruz, Carlos Alberto & Islas-Aguirre, Juan Francisco & Ramírez-Fuentes, Grodecz Alfredo & Pérez-Sosa, Leonardo, 2020. "A scale invariant model for the expansion of agricultural land and government spending on the agricultural sector," Land Use Policy, Elsevier, vol. 92(C).
    20. Peters, Ronny & Olagoke, Adewole & Berger, Uta, 2018. "A new mechanistic theory of self-thinning: Adaptive behaviour of plants explains the shape and slope of self-thinning trajectories," Ecological Modelling, Elsevier, vol. 390(C), pages 1-9.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1007325. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.