IDEAS home Printed from https://ideas.repec.org/a/eee/ecomod/v231y2012icp146-152.html
   My bibliography  Save this article

A model that explains diversity patterns of arbuscular mycorrhizas

Author

Listed:
  • Veresoglou, Stavros D.
  • Halley, John M.

Abstract

Worldwide arbuscular mycorrhizal (AM) plants in grassland ecosystems associate with multiple AM symbionts; the literature suggests that the typical range varies from 7 to 11 AM symbionts. Using a model based on group selection, we examine the evolutionary traits that could be responsible for maintaining this situation. We assumed that from a pool of 160 potential symbionts some of them would deliver a profit for the plant while the others (“defectors”) would deliver comparable damage. The plant could control the number of simultaneous fungi it associated with but not their identities. Plants admitting higher numbers of symbionts can gain greater benefits but run a greater risk of associating with defectors. Based on simulation results we can demonstrate convergence toward an optimal number of fungal symbionts which occurs faster for plants that experience low survivorship and higher selection pressure. Additionally, for seedling survivorship rates close to those experienced in grassland biomes (i.e. around 50%) there appears to be a steady plateau with an optimum of 7 symbionts over a wide range of defection probabilities. This does not hold for other biomes with higher plant mortality such as woodlands in which there is an unsteady situation with highly likely modification of the number of simultaneous symbionts. This may hold important clues about to the origin of the ectomycorrhizal associations where only one symbiont is optimum.

Suggested Citation

  • Veresoglou, Stavros D. & Halley, John M., 2012. "A model that explains diversity patterns of arbuscular mycorrhizas," Ecological Modelling, Elsevier, vol. 231(C), pages 146-152.
  • Handle: RePEc:eee:ecomod:v:231:y:2012:i:c:p:146-152
    DOI: 10.1016/j.ecolmodel.2012.01.026
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304380012000555
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ecolmodel.2012.01.026?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kohki Akiyama & Ken-ichi Matsuzaki & Hideo Hayashi, 2005. "Plant sesquiterpenes induce hyphal branching in arbuscular mycorrhizal fungi," Nature, Nature, vol. 435(7043), pages 824-827, June.
    2. Marcel G. A. van der Heijden & John N. Klironomos & Margot Ursic & Peter Moutoglis & Ruth Streitwolf-Engel & Thomas Boller & Andres Wiemken & Ian R. Sanders, 1998. "Mycorrhizal fungal diversity determines plant biodiversity, ecosystem variability and productivity," Nature, Nature, vol. 396(6706), pages 69-72, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Antonius Suparno & Saraswati Prabawardani & Sudirman Yahya & Novita Taroreh, 2015. "Inoculation of Arbuscular Mycorrhizal Fungi Increase the Growth of Cocoa and Coffee Seedling Applied with Ayamaru Phosphate Rock," Journal of Agricultural Science, Canadian Center of Science and Education, vol. 7(5), pages 199-199, April.
    2. Laura A Schreeg & W John Kress & David L Erickson & Nathan G Swenson, 2010. "Phylogenetic Analysis of Local-Scale Tree Soil Associations in a Lowland Moist Tropical Forest," PLOS ONE, Public Library of Science, vol. 5(10), pages 1-10, October.
    3. Xiuhua CHEN & Rui ZHANG & Fengling WANG, 2017. "Transgenic Bt cotton inhibited arbuscular mycorrhizal fungus differentiation and colonization," Plant, Soil and Environment, Czech Academy of Agricultural Sciences, vol. 63(2), pages 62-69.
    4. Jinying Cui & Noriko Nishide & Kiyoshi Mashiguchi & Kana Kuroha & Masayuki Miya & Kazuhiko Sugimoto & Jun-Ichi Itoh & Shinjiro Yamaguchi & Takeshi Izawa, 2023. "Fertilization controls tiller numbers via transcriptional regulation of a MAX1-like gene in rice cultivation," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    5. Matthew Chekwube Enebe & Mariana Erasmus, 2023. "Symbiosis—A Perspective on the Effects of Host Traits and Environmental Parameters in Arbuscular Mycorrhizal Fungal Richness, Colonization and Ecological Functions," Agriculture, MDPI, vol. 13(10), pages 1-28, September.
    6. T E Anne Cotton & Alex J Dumbrell & Thorunn Helgason, 2014. "What Goes in Must Come out: Testing for Biases in Molecular Analysis of Arbuscular Mycorrhizal Fungal Communities," PLOS ONE, Public Library of Science, vol. 9(10), pages 1-7, October.
    7. Vítězslav Vlček & Miroslav Pohanka, 2020. "Glomalin - an interesting protein part of the soil organic matter," Soil and Water Research, Czech Academy of Agricultural Sciences, vol. 15(2), pages 67-74.
    8. Agata Klimkowska & Klara Goldstein & Tomasz Wyszomirski & Łukasz Kozub & Mateusz Wilk & Camiel Aggenbach & Jan P Bakker & Heinrich Belting & Boudewijn Beltman & Volker Blüml & Yzaak De Vries & Beate G, 2019. "Are we restoring functional fens? – The outcomes of restoration projects in fens re-analysed with plant functional traits," PLOS ONE, Public Library of Science, vol. 14(4), pages 1-22, April.
    9. Sakai, Kenshi & Brown, Patrick H. & Rosenstock, Todd S. & Upadhyaya, Shrinivasa K. & Hastings, Alan, 2022. "Spatial phase synchronisation of pistachio alternate bearing: Common-noise-induced synchronisation of coupled chaotic oscillators," Chaos, Solitons & Fractals, Elsevier, vol. 165(P2).
    10. Pankaj Bhatt & Amit Verma & Shulbhi Verma & Md. Shahbaz Anwar & Parteek Prasher & Harish Mudila & Shaohua Chen, 2020. "Understanding Phytomicrobiome: A Potential Reservoir for Better Crop Management," Sustainability, MDPI, vol. 12(13), pages 1-20, July.
    11. Abdul Saboor & Muhammad Arif Ali & Niaz Ahmed & Milan Skalicky & Subhan Danish & Shah Fahad & Fahmy Hassan & Mohamed M. Hassan & Marian Brestic & Ayman EL Sabagh & Rahul Datta, 2021. "Biofertilizer-Based Zinc Application Enhances Maize Growth, Gas Exchange Attributes, and Yield in Zinc-Deficient Soil," Agriculture, MDPI, vol. 11(4), pages 1-20, April.
    12. Mohd. Kamran Khan & Anamika Pandey & Mehmet Hamurcu & Tomáš Vyhnánek & Sajad Majeed Zargar & Abdullah Kahraman & Ali Topal & Sait Gezgin, 2024. "Exploring strigolactones for inducing abiotic stress tolerance in plants," Czech Journal of Genetics and Plant Breeding, Czech Academy of Agricultural Sciences, vol. 60(2), pages 55-69.
    13. Xi Wei & Wei Song & Ya Shao & Xiangwen Cai, 2022. "Progress of Ecological Restoration Research Based on Bibliometric Analysis," IJERPH, MDPI, vol. 20(1), pages 1-21, December.
    14. Gowdy, John & Seidl, Irmi, 2004. "Economic man and selfish genes: the implications of group selection for economic valuation and policy," Journal of Behavioral and Experimental Economics (formerly The Journal of Socio-Economics), Elsevier, vol. 33(3), pages 343-358, July.
    15. Amrita Gupta & Udai B. Singh & Pramod K. Sahu & Surinder Paul & Adarsh Kumar & Deepti Malviya & Shailendra Singh & Pandiyan Kuppusamy & Prakash Singh & Diby Paul & Jai P. Rai & Harsh V. Singh & Madhab, 2022. "Linking Soil Microbial Diversity to Modern Agriculture Practices: A Review," IJERPH, MDPI, vol. 19(5), pages 1-29, March.
    16. Mengdie Feng & Dengyu Zhang & Binghui He & Ke Liang & Peidong Xi & Yunfei Bi & Yingying Huang & Dongxin Liu & Tianyang Li, 2021. "Characteristics of Soil C, N, and P Stoichiometry as Affected by Land Use and Slope Position in the Three Gorges Reservoir Area, Southwest China," Sustainability, MDPI, vol. 13(17), pages 1-13, September.
    17. Isabel Ceballos & Michael Ruiz & Cristhian Fernández & Ricardo Peña & Alia Rodríguez & Ian R Sanders, 2013. "The In Vitro Mass-Produced Model Mycorrhizal Fungus, Rhizophagus irregularis, Significantly Increases Yields of the Globally Important Food Security Crop Cassava," PLOS ONE, Public Library of Science, vol. 8(8), pages 1-10, August.
    18. Alan W Bowsher & Rifhat Ali & Scott A Harding & Chung-Jui Tsai & Lisa A Donovan, 2016. "Evolutionary Divergences in Root Exudate Composition among Ecologically-Contrasting Helianthus Species," PLOS ONE, Public Library of Science, vol. 11(1), pages 1-16, January.
    19. Guoxi Shi & Yongjun Liu & Lin Mao & Shengjing Jiang & Qi Zhang & Gang Cheng & Lizhe An & Guozhen Du & Huyuan Feng, 2014. "Relative Importance of Deterministic and Stochastic Processes in Driving Arbuscular Mycorrhizal Fungal Assemblage during the Spreading of a Toxic Plant," PLOS ONE, Public Library of Science, vol. 9(4), pages 1-9, April.
    20. Chuanhong Xu & Wenhua Xiang & Mengmeng Gou & Liang Chen & Pifeng Lei & Xi Fang & Xiangwen Deng & Shuai Ouyang, 2018. "Effects of Forest Restoration on Soil Carbon, Nitrogen, Phosphorus, and Their Stoichiometry in Hunan, Southern China," Sustainability, MDPI, vol. 10(6), pages 1-14, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecomod:v:231:y:2012:i:c:p:146-152. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/ecological-modelling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.