IDEAS home Printed from https://ideas.repec.org/a/ers/journl/vxxvy2022i4p144-159.html
   My bibliography  Save this article

The Challenges for Social and Economic Policy Related to the Energy Transformation - Analysis of Profitability and Minimizing the Risk of Deciding to Invest in a Home Micro-Installation

Author

Listed:
  • Mariusz Niekurzak
  • Wojciech Lewicki
  • Agnieszka Brelik

Abstract

Purpose: The aim of the article is to analyze the profitability and minimize the risk of making a decision in the investment of a home PV micro-installation. Particular emphasis was placed on the determinants of the boundary conditions at which there is an investment and economic justification for potential investors to make business decisions in the implementation of the project of electricity production for their own needs. Approach/Methodology/Design: The research was carried out using the NPV - Net Present Value of Investment and IRR - Internal rate of Return methods. These methods allowed the authors to calculate the market value of investments with the assumed boundary criteria and to determine the economic efficiency of the investment. The research was carried out in April-March 2021-2022 on a test PV installation in a household. Findings: Installing a photovoltaic system in your household brings many benefits. It should be noted that each kWh produced in a PV installation makes the investor independent of the grid distributor, reduces the consumption of energy from conventional sources, minimizes the emission of pollutants into the atmosphere and favors economic development. In addition, investment in such installations allows for obtaining income from the sale of surplus energy produced. Practical implications: The presented models have shown that the project for their implementation is fully economically justified and will allow investors to make a rational investment decision. These models can be effectively used in other countries, and can also be a starting point for a discussion on the direction of energy development. Originality/Value: Obtaining this data allowed the authors to indicate the directions of improvements that may contribute to obtaining a more reliable assessment of the profitability of the tested installations.

Suggested Citation

  • Mariusz Niekurzak & Wojciech Lewicki & Agnieszka Brelik, 2022. "The Challenges for Social and Economic Policy Related to the Energy Transformation - Analysis of Profitability and Minimizing the Risk of Deciding to Invest in a Home Micro-Installation," European Research Studies Journal, European Research Studies Journal, vol. 0(4), pages 144-159.
  • Handle: RePEc:ers:journl:v:xxv:y:2022:i:4:p:144-159
    as

    Download full text from publisher

    File URL: https://ersj.eu/journal/3072/download
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Agata Zdyb & Slawomir Gulkowski, 2020. "Performance Assessment of Four Different Photovoltaic Technologies in Poland," Energies, MDPI, vol. 13(1), pages 1-17, January.
    2. Hayibo, Koami Soulemane & Pearce, Joshua M., 2021. "A review of the value of solar methodology with a case study of the U.S. VOS," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).
    3. Alessandro Burgio & Daniele Menniti & Nicola Sorrentino & Anna Pinnarelli & Zbigniew Leonowicz, 2020. "Influence and Impact of Data Averaging and Temporal Resolution on the Assessment of Energetic, Economic and Technical Issues of Hybrid Photovoltaic-Battery Systems," Energies, MDPI, vol. 13(2), pages 1-26, January.
    4. Mariusz Niekurzak, 2021. "The Potential of Using Renewable Energy Sources in Poland Taking into Account the Economic and Ecological Conditions," Energies, MDPI, vol. 14(22), pages 1-17, November.
    5. Pablo Benalcazar & Adam Suski & Jacek Kamiński, 2020. "The Effects of Capital and Energy Subsidies on the Optimal Design of Microgrid Systems," Energies, MDPI, vol. 13(4), pages 1-23, February.
    6. Höfer, Tim & Madlener, Reinhard, 2020. "A participatory stakeholder process for evaluating sustainable energy transition scenarios," Energy Policy, Elsevier, vol. 139(C).
    7. Mariusz Niekurzak & Wojciech Lewicki & Wojciech Drożdż & Paweł Miązek, 2022. "Measures for Assessing the Effectiveness of Investments for Electricity and Heat Generation from the Hybrid Cooperation of a Photovoltaic Installation with a Heat Pump on the Example of a Household," Energies, MDPI, vol. 15(16), pages 1-20, August.
    8. Krzysztof Zamasz & Radosław Kapłan & Przemysław Kaszyński & Piotr W. Saługa, 2020. "An Analysis of Support Mechanisms for New CHPs: The Case of Poland," Energies, MDPI, vol. 13(21), pages 1-18, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wojciech Lewicki & Mariusz Niekurzak, 2024. "Strategic Assessment of the Environmental Impact of Ski Resorts as Part of the Polish Energy Policy Project," Energies, MDPI, vol. 17(13), pages 1-27, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mariusz Niekurzak & Jerzy Mikulik, 2021. "Modeling of Energy Consumption and Reduction of Pollutant Emissions in a Walking Beam Furnace Using the Expert Method—Case Study," Energies, MDPI, vol. 14(23), pages 1-22, December.
    2. Mariusz Niekurzak & Wojciech Lewicki & Hasan Huseyin Coban & Agnieszka Brelik, 2023. "Conceptual Design of a Semi-Automatic Process Line for Recycling Photovoltaic Panels as a Way to Ecological Sustainable Production," Sustainability, MDPI, vol. 15(3), pages 1-20, February.
    3. Mariusz Niekurzak & Wojciech Lewicki & Wojciech Drożdż & Paweł Miązek, 2022. "Measures for Assessing the Effectiveness of Investments for Electricity and Heat Generation from the Hybrid Cooperation of a Photovoltaic Installation with a Heat Pump on the Example of a Household," Energies, MDPI, vol. 15(16), pages 1-20, August.
    4. Mariusz Niekurzak & Jerzy Mikulik, 2023. "Business Models in Terms of the Strategy for Sustainable Management in Economic Entities Taking into Account Energy Transformation," Energies, MDPI, vol. 16(11), pages 1-17, May.
    5. Marcin Bukowski & Janusz Majewski & Agnieszka Sobolewska, 2020. "Macroeconomic Electric Energy Production Efficiency of Photovoltaic Panels in Single-Family Homes in Poland," Energies, MDPI, vol. 14(1), pages 1-21, December.
    6. Mariusz Niekurzak, 2021. "The Potential of Using Renewable Energy Sources in Poland Taking into Account the Economic and Ecological Conditions," Energies, MDPI, vol. 14(22), pages 1-17, November.
    7. Hosan, Shahadat & Rahman, Md Matiar & Karmaker, Shamal Chandra & Saha, Bidyut Baran, 2023. "Energy subsidies and energy technology innovation: Policies for polygeneration systems diffusion," Energy, Elsevier, vol. 267(C).
    8. Sebastian Schär & Jutta Geldermann, 2021. "Adopting Multiactor Multicriteria Analysis for the Evaluation of Energy Scenarios," Sustainability, MDPI, vol. 13(5), pages 1-19, March.
    9. Piotr Olczak & Małgorzata Olek & Dominika Matuszewska & Artur Dyczko & Tomasz Mania, 2021. "Monofacial and Bifacial Micro PV Installation as Element of Energy Transition—The Case of Poland," Energies, MDPI, vol. 14(2), pages 1-22, January.
    10. Ewelina Krawczak, 2023. "A Comparative Analysis of Measured and Simulated Data of PV Rooftop Installations Located in Poland," Energies, MDPI, vol. 16(16), pages 1-17, August.
    11. Indre Siksnelyte-Butkiene & Dalia Streimikiene, 2022. "Sustainable Development of Road Transport in the EU: Multi-Criteria Analysis of Countries’ Achievements," Energies, MDPI, vol. 15(21), pages 1-25, November.
    12. Piotr Wróblewski & Mariusz Niekurzak, 2022. "Assessment of the Possibility of Using Various Types of Renewable Energy Sources Installations in Single-Family Buildings as Part of Saving Final Energy Consumption in Polish Conditions," Energies, MDPI, vol. 15(4), pages 1-27, February.
    13. Ewelina Kochanek, 2021. "Evaluation of Energy Transition Scenarios in Poland," Energies, MDPI, vol. 14(19), pages 1-13, September.
    14. Fernando Echevarría Camarero & Ana Ogando-Martínez & Pablo Durán Gómez & Pablo Carrasco Ortega, 2022. "Profitability of Batteries in Photovoltaic Systems for Small Industrial Consumers in Spain under Current Regulatory Framework and Energy Prices," Energies, MDPI, vol. 16(1), pages 1-19, December.
    15. Bompard, Ettore & Ciocia, Alessandro & Grosso, Daniele & Huang, Tao & Spertino, Filippo & Jafari, Mehdi & Botterud, Audun, 2022. "Assessing the role of fluctuating renewables in energy transition: Methodologies and tools," Applied Energy, Elsevier, vol. 314(C).
    16. Robert Van Buskirk & Lawrence Kachione & Gilbert Robert & Rachel Kanyerere & Christina Gilbert & James Majoni, 2021. "How to Make Off-Grid Solar Electric Cooking Cheaper Than Wood-Based Cooking," Energies, MDPI, vol. 14(14), pages 1-21, July.
    17. Magdalena Kapłan & Kamila Klimek & Grzegorz Maj & Dmytro Zhuravel & Andrii Bondar & Viktoriia Lemeshchenko-Lagoda & Boris Boltianskyi & Larysa Boltianska & Hanna Syrotyuk & Serhiy Syrotyuk & Ryszard K, 2022. "Method of Evaluation of Materials Wear of Cylinder-Piston Group of Diesel Engines in the Biodiesel Fuel Environment," Energies, MDPI, vol. 15(9), pages 1-28, May.
    18. Alessandro Ciocia & Angela Amato & Paolo Di Leo & Stefania Fichera & Gabriele Malgaroli & Filippo Spertino & Slavka Tzanova, 2021. "Self-Consumption and Self-Sufficiency in Photovoltaic Systems: Effect of Grid Limitation and Storage Installation," Energies, MDPI, vol. 14(6), pages 1-24, March.
    19. Hasan Huseyin Coban & Wojciech Lewicki & Ewelina Sendek-Matysiak & Zbigniew Łosiewicz & Wojciech Drożdż & Radosław Miśkiewicz, 2022. "Electric Vehicles and Vehicle–Grid Interaction in the Turkish Electricity System," Energies, MDPI, vol. 15(21), pages 1-19, November.
    20. Waldemar Izdebski & Katarzyna Kosiorek, 2023. "Analysis and Evaluation of the Possibility of Electricity Production from Small Photovoltaic Installations in Poland," Energies, MDPI, vol. 16(2), pages 1-19, January.

    More about this item

    Keywords

    Profitability account; economic analysis; energy analysis; renewable energy sources; photovoltaic panels.;
    All these keywords.

    JEL classification:

    • D12 - Microeconomics - - Household Behavior - - - Consumer Economics: Empirical Analysis
    • O29 - Economic Development, Innovation, Technological Change, and Growth - - Development Planning and Policy - - - Other
    • P18 - Political Economy and Comparative Economic Systems - - Capitalist Economies - - - Energy; Environment
    • Q20 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Renewable Resources and Conservation - - - General

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ers:journl:v:xxv:y:2022:i:4:p:144-159. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Marios Agiomavritis (email available below). General contact details of provider: https://ersj.eu/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.