IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i21p8291-d964826.html
   My bibliography  Save this article

Sustainable Development of Road Transport in the EU: Multi-Criteria Analysis of Countries’ Achievements

Author

Listed:
  • Indre Siksnelyte-Butkiene

    (Institute of Social Sciences and Applied Informatics, Kaunas Faculty, Vilnius University, Muitines 8, LT-50229 Kaunas, Lithuania)

  • Dalia Streimikiene

    (Institute of Social Sciences and Applied Informatics, Kaunas Faculty, Vilnius University, Muitines 8, LT-50229 Kaunas, Lithuania)

Abstract

One quarter of global energy consumption goes towards meeting transport needs. In Europe, the share of energy for transport is much higher and accounts for about a third. Therefore, it is very important to monitor the sustainable development and progress of the sector. This paper seeks to develop a framework for the sustainability assessment of road transport in EU countries and to evaluate the countries’ achievements in the last decade. The research adheres to the provision that the developed framework should be easily applied in future studies. Therefore, significant attention is paid to the selection of indicators and their availability, as well as the selection of the research instrument itself. The multi-criteria decision-making (MCDM) technique TOPSIS has been applied for calculations and countries’ ranking, in order to compare countries’ achievements in the last decade (2010–2020). The last ten years’ analysis allows us to identify the direction of individual countries in developing road transport.

Suggested Citation

  • Indre Siksnelyte-Butkiene & Dalia Streimikiene, 2022. "Sustainable Development of Road Transport in the EU: Multi-Criteria Analysis of Countries’ Achievements," Energies, MDPI, vol. 15(21), pages 1-25, November.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:21:p:8291-:d:964826
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/21/8291/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/21/8291/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Persyn, Damiaan & Díaz-Lanchas, Jorge & Barbero, Javier, 2022. "Estimating road transport costs between and within European Union regions," Transport Policy, Elsevier, vol. 124(C), pages 33-42.
    2. Blanco, Herib & Nijs, Wouter & Ruf, Johannes & Faaij, André, 2018. "Potential for hydrogen and Power-to-Liquid in a low-carbon EU energy system using cost optimization," Applied Energy, Elsevier, vol. 232(C), pages 617-639.
    3. Clara Moreira Senne & Josiane Palma Lima & Fábio Favaretto, 2021. "An Index for the Sustainability of Integrated Urban Transport and Logistics: The Case Study of São Paulo," Sustainability, MDPI, vol. 13(21), pages 1-18, November.
    4. Bulckaen, Jeroen & Keseru, Imre & Macharis, Cathy, 2016. "Sustainability versus stakeholder preferences: Searching for synergies in urban and regional mobility measures," Research in Transportation Economics, Elsevier, vol. 55(C), pages 40-49.
    5. Jordi Perdiguero & Juan Luis Jiménez, 2012. "“Policy options for the promotion of electric vehicles: a review”," IREA Working Papers 201208, University of Barcelona, Research Institute of Applied Economics, revised Mar 2012.
    6. Corral, Serafin & Hernandez, Yeray, 2017. "Social Sensitivity Analyses Applied to Environmental Assessment Processes," Ecological Economics, Elsevier, vol. 141(C), pages 1-10.
    7. Snežana Tadić & Mladen Krstić & Violeta Roso & Nikolina Brnjac, 2019. "Planning an Intermodal Terminal for the Sustainable Transport Networks," Sustainability, MDPI, vol. 11(15), pages 1-20, July.
    8. Blanco, Herib & Nijs, Wouter & Ruf, Johannes & Faaij, André, 2018. "Potential of Power-to-Methane in the EU energy transition to a low carbon system using cost optimization," Applied Energy, Elsevier, vol. 232(C), pages 323-340.
    9. Artur Czech & Jerzy Lewczuk & Leonas Ustinovichius & Robertas Kontrimovičius, 2022. "Multi-Criteria Assessment of Transport Sustainability in Chosen European Union Countries: A Dynamic Approach," Sustainability, MDPI, vol. 14(14), pages 1-22, July.
    10. Geerten Van de Kaa & Daniel Scholten & Jafar Rezaei & Christine Milchram, 2017. "The Battle between Battery and Fuel Cell Powered Electric Vehicles: A BWM Approach," Energies, MDPI, vol. 10(11), pages 1-13, October.
    11. Barfod, Michael Bruhn & Salling, Kim Bang, 2015. "A new composite decision support framework for strategic and sustainable transport appraisals," Transportation Research Part A: Policy and Practice, Elsevier, vol. 72(C), pages 1-15.
    12. Gunkel, Philipp Andreas & Bergaentzlé, Claire & Græsted Jensen, Ida & Scheller, Fabian, 2020. "From passive to active: Flexibility from electric vehicles in the context of transmission system development," Applied Energy, Elsevier, vol. 277(C).
    13. Pradeep Chaitanya Jasti & V. Vinayaka Ram, 2019. "Sustainable benchmarking of a public transport system using analytic hierarchy process and fuzzy logic: a case study of Hyderabad, India," Public Transport, Springer, vol. 11(3), pages 457-485, October.
    14. Maria Cieśla & Aleksander Sobota & Marianna Jacyna, 2020. "Multi-Criteria Decision Making Process in Metropolitan Transport Means Selection Based on the Sharing Mobility Idea," Sustainability, MDPI, vol. 12(17), pages 1-21, September.
    15. Jairo Ortega & Sarbast Moslem & János Tóth & Tamás Péter & Juan Palaguachi & Mario Paguay, 2020. "Using Best Worst Method for Sustainable Park and Ride Facility Location," Sustainability, MDPI, vol. 12(23), pages 1-18, December.
    16. Indre Siksnelyte-Butkiene, 2021. "Impact of the COVID-19 Pandemic to the Sustainability of the Energy Sector," Sustainability, MDPI, vol. 13(23), pages 1-19, November.
    17. Artur Czech & Katarzyna Gralak & Marzena Kacprzak & Agnieszka Król, 2021. "Quantitative Analysis of Sustainable Transport Development as a Support Tool for Transport System Management: Spatial Approach," Energies, MDPI, vol. 14(19), pages 1-19, September.
    18. Bristow, A. L. & Nellthorp, J., 2000. "Transport project appraisal in the European Union," Transport Policy, Elsevier, vol. 7(1), pages 51-60, January.
    19. Höfer, Tim & Madlener, Reinhard, 2020. "A participatory stakeholder process for evaluating sustainable energy transition scenarios," Energy Policy, Elsevier, vol. 139(C).
    20. Shohreh Moradi & Grzegorz Sierpiński & Houshmand Masoumi, 2022. "System Dynamics Modeling and Fuzzy MCDM Approach as Support for Assessment of Sustainability Management on the Example of Transport Sector Company," Energies, MDPI, vol. 15(13), pages 1-27, July.
    21. Ilaria Henke & Armando Cartenì & Luigi Di Francesco, 2020. "A Sustainable Evaluation Processes for Investments in the Transport Sector: A Combined Multi-Criteria and Cost–Benefit Analysis for a New Highway in Italy," Sustainability, MDPI, vol. 12(23), pages 1-26, November.
    22. Liu, Zhe & Song, Juhyun & Kubal, Joseph & Susarla, Naresh & Knehr, Kevin W. & Islam, Ehsan & Nelson, Paul & Ahmed, Shabbir, 2021. "Comparing total cost of ownership of battery electric vehicles and internal combustion engine vehicles," Energy Policy, Elsevier, vol. 158(C).
    23. Qin-Lei Jing & Han-Zhen Liu & Wei-Qing Yu & Xu He, 2022. "The Impact of Public Transportation on Carbon Emissions—From the Perspective of Energy Consumption," Sustainability, MDPI, vol. 14(10), pages 1-18, May.
    24. Marleau Donais, Francis & Abi-Zeid, Irène & Waygood, E. Owen D. & Lavoie, Roxane, 2019. "Assessing and ranking the potential of a street to be redesigned as a Complete Street: A multi-criteria decision aiding approach," Transportation Research Part A: Policy and Practice, Elsevier, vol. 124(C), pages 1-19.
    25. Ebadian, Mahmood & van Dyk, Susan & McMillan, James D. & Saddler, Jack, 2020. "Biofuels policies that have encouraged their production and use: An international perspective," Energy Policy, Elsevier, vol. 147(C).
    26. Thiel, Christian & Nijs, Wouter & Simoes, Sofia & Schmidt, Johannes & van Zyl, Arnold & Schmid, Erwin, 2016. "The impact of the EU car CO2 regulation on the energy system and the role of electro-mobility to achieve transport decarbonisation," Energy Policy, Elsevier, vol. 96(C), pages 153-166.
    27. Schulte-Fischedick, Marta & Shan, Yuli & Hubacek, Klaus, 2021. "Implications of COVID-19 lockdowns on surface passenger mobility and related CO2 emission changes in Europe," Applied Energy, Elsevier, vol. 300(C).
    28. Wojciech Sałabun & Krzysztof Palczewski & Jarosław Wątróbski, 2019. "Multicriteria Approach to Sustainable Transport Evaluation under Incomplete Knowledge: Electric Bikes Case Study," Sustainability, MDPI, vol. 11(12), pages 1-19, June.
    29. Ananna Paul & Md. Abdul Moktadir & Sanjoy Kumar Paul, 2020. "An innovative decision-making framework for evaluating transportation service providers based on sustainable criteria," International Journal of Production Research, Taylor & Francis Journals, vol. 58(24), pages 7334-7352, December.
    30. Uroš Kramar & Dejan Dragan & Darja Topolšek, 2019. "The Holistic Approach to Urban Mobility Planning with a Modified Focus Group, SWOT, and Fuzzy Analytical Hierarchical Process," Sustainability, MDPI, vol. 11(23), pages 1-29, November.
    31. Philipp Andreas Gunkel & Claire Bergaentzl'e & Ida Gr{ae}sted Jensen & Fabian Scheller, 2020. "From passive to active: Flexibility from electric vehicles in the context of transmission system development," Papers 2011.05830, arXiv.org.
    32. Papadis, Elisa & Tsatsaronis, George, 2020. "Challenges in the decarbonization of the energy sector," Energy, Elsevier, vol. 205(C).
    33. Tattini, Jacopo & Gargiulo, Maurizio & Karlsson, Kenneth, 2018. "Reaching carbon neutral transport sector in Denmark – Evidence from the incorporation of modal shift into the TIMES energy system modeling framework," Energy Policy, Elsevier, vol. 113(C), pages 571-583.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Blanco, Herib & Gómez Vilchez, Jonatan J. & Nijs, Wouter & Thiel, Christian & Faaij, André, 2019. "Soft-linking of a behavioral model for transport with energy system cost optimization applied to hydrogen in EU," Renewable and Sustainable Energy Reviews, Elsevier, vol. 115(C).
    2. Francis Marleau Donais & Irène Abi-Zeid & E. Owen D. Waygood & Roxane Lavoie, 2019. "A review of cost–benefit analysis and multicriteria decision analysis from the perspective of sustainable transport in project evaluation," EURO Journal on Decision Processes, Springer;EURO - The Association of European Operational Research Societies, vol. 7(3), pages 327-358, November.
    3. Raffaele Salvucci & Stefan Petrović & Kenneth Karlsson & Markus Wråke & Tanu Priya Uteng & Olexandr Balyk, 2019. "Energy Scenario Analysis for the Nordic Transport Sector: A Critical Review," Energies, MDPI, vol. 12(12), pages 1-19, June.
    4. Schreiner, Lena & Madlener, Reinhard, 2022. "Investing in power grid infrastructure as a flexibility option: A DSGE assessment for Germany," Energy Economics, Elsevier, vol. 107(C).
    5. Østergaard, P.A. & Lund, H. & Thellufsen, J.Z. & Sorknæs, P. & Mathiesen, B.V., 2022. "Review and validation of EnergyPLAN," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    6. Bogdanov, Dmitrii & Toktarova, Alla & Breyer, Christian, 2019. "Transition towards 100% renewable power and heat supply for energy intensive economies and severe continental climate conditions: Case for Kazakhstan," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    7. Fambri, Gabriele & Diaz-Londono, Cesar & Mazza, Andrea & Badami, Marco & Sihvonen, Teemu & Weiss, Robert, 2022. "Techno-economic analysis of Power-to-Gas plants in a gas and electricity distribution network system with high renewable energy penetration," Applied Energy, Elsevier, vol. 312(C).
    8. Nagel, Niels Oliver & Jåstad, Eirik Ogner & Martinsen, Thomas, 2024. "The grid benefits of vehicle-to-grid in Norway and Denmark: An analysis of home- and public parking potentials," Energy, Elsevier, vol. 293(C).
    9. Barbara Uliasz-Misiak & Joanna Lewandowska-Śmierzchalska & Rafał Matuła & Radosław Tarkowski, 2022. "Prospects for the Implementation of Underground Hydrogen Storage in the EU," Energies, MDPI, vol. 15(24), pages 1-17, December.
    10. Millinger, M. & Reichenberg, L. & Hedenus, F. & Berndes, G. & Zeyen, E. & Brown, T., 2022. "Are biofuel mandates cost-effective? - An analysis of transport fuels and biomass usage to achieve emissions targets in the European energy system," Applied Energy, Elsevier, vol. 326(C).
    11. Baena-Moreno, Francisco M. & Pastor-Pérez, Laura & Zhang, Zhien & Reina, T.R., 2020. "Stepping towards a low-carbon economy. Formic acid from biogas as case of study," Applied Energy, Elsevier, vol. 268(C).
    12. Guilera, Jordi & Andreu, Teresa & Basset, Núria & Boeltken, Tim & Timm, Friedemann & Mallol, Ignasi & Morante, Joan Ramon, 2020. "Synthetic natural gas production from biogas in a waste water treatment plant," Renewable Energy, Elsevier, vol. 146(C), pages 1301-1308.
    13. Venturini, Giada & Pizarro-Alonso, Amalia & Münster, Marie, 2019. "How to maximise the value of residual biomass resources: The case of straw in Denmark," Applied Energy, Elsevier, vol. 250(C), pages 369-388.
    14. Raghad Almashhour & Mohamed AlQahtani & Malick Ndiaye, 2023. "Highway Transportation, Health, and Social Equity: A Delphi-ANP Approach to Sustainable Transport Planning," Sustainability, MDPI, vol. 15(22), pages 1-38, November.
    15. Jåstad, Eirik Ogner & Bolkesjø, Torjus Folsland, 2023. "Modelling emission and land-use impacts of altered bioenergy use in the future energy system," Energy, Elsevier, vol. 265(C).
    16. Cassetti, Gabriele & Boitier, Baptiste & Elia, Alessia & Le Mouël, Pierre & Gargiulo, Maurizio & Zagamé, Paul & Nikas, Alexandros & Koasidis, Konstantinos & Doukas, Haris & Chiodi, Alessandro, 2023. "The interplay among COVID-19 economic recovery, behavioural changes, and the European Green Deal: An energy-economic modelling perspective," Energy, Elsevier, vol. 263(PC).
    17. Ortega, Margarita & Río, Pablo del & Ruiz, Pablo & Nijs, Wouter & Politis, Savvas, 2020. "Analysing the influence of trade, technology learning and policy on the employment prospects of wind and solar energy deployment: The EU case," Renewable and Sustainable Energy Reviews, Elsevier, vol. 122(C).
    18. Damien Guilbert & Gianpaolo Vitale, 2021. "Hydrogen as a Clean and Sustainable Energy Vector for Global Transition from Fossil-Based to Zero-Carbon," Clean Technol., MDPI, vol. 3(4), pages 1-29, December.
    19. Bergaentzle, Claire & Gunkel, Philipp Andreas, 2022. "Cross-sector flexibility, storage investment and the integration of renewables: Capturing the impacts of grid tariffs," Energy Policy, Elsevier, vol. 164(C).
    20. Yin, Linfei & Qiu, Yao, 2022. "Long-term price guidance mechanism of flexible energy service providers based on stochastic differential methods," Energy, Elsevier, vol. 238(PB).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:21:p:8291-:d:964826. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.