IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i21p5635-d436027.html
   My bibliography  Save this article

An Analysis of Support Mechanisms for New CHPs: The Case of Poland

Author

Listed:
  • Krzysztof Zamasz

    (Department of Management, Faculty of Applied Sciences, WSB University, 41-300 Dąbrowa Górnicza, Poland)

  • Radosław Kapłan

    (Faculty of Management, AGH University of Science and Technology, Gramatyka 10, 30-059 Krakow, Poland)

  • Przemysław Kaszyński

    (Division of Energy Economics, Mineral and Energy Economy Research Institute of the Polish Academy of Sciences, ul. J. Wybickiego 7A, 31-261 Kraków, Poland)

  • Piotr W. Saługa

    (Department of Management, Faculty of Applied Sciences, WSB University, 41-300 Dąbrowa Górnicza, Poland)

Abstract

The increasing demand for energy on a global scale, as well as the social pressure related to counteracting the effects of climate change, has created favourable conditions for the transformation of energy sectors towards the possession of low-emission generation sources. This situation, however, requires investment actions in order to modernise the existing power and CHP (Combined Heat and Power) plants and construct new units. These issues, together with the climate and energy policy pursued by the European Union, are the main reasons for the emergence of various governmental mechanisms supporting the replacement of old coal power units with highly efficient cogeneration units based on gas turbines and other units. The support may take different forms. This article discusses two examples of mechanisms available on the Polish market, i.e., ( i ) the capacity market and ( ii ) promoting electricity from high-efficiency cogeneration in the form of individual cogeneration premium. The purpose and novelty of the analysis was to identify the pros and cons and the key parameters which determine the advantage of a given mechanism. Both these mechanisms have been characterised and then compared via the example of a planned cogeneration gas unit (an open cycle gas turbine—OCGT). This assessment was made using discount methods based on the FCFF (free cashflow to company) approach. The analysis did not bring forward an unequivocal answer as to the absolute advantage of any of the solutions, but it was able to point out significant problems related to their practical use.

Suggested Citation

  • Krzysztof Zamasz & Radosław Kapłan & Przemysław Kaszyński & Piotr W. Saługa, 2020. "An Analysis of Support Mechanisms for New CHPs: The Case of Poland," Energies, MDPI, vol. 13(21), pages 1-18, October.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:21:p:5635-:d:436027
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/21/5635/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/21/5635/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Xiaoru Zhuang & Xinhai Xu & Wenrui Liu & Wenfu Xu, 2019. "LCOE Analysis of Tower Concentrating Solar Power Plants Using Different Molten-Salts for Thermal Energy Storage in China," Energies, MDPI, vol. 12(7), pages 1-17, April.
    2. Aikaterini Papadimitriou & Vassilios Vassiliou & Kalliopi Tataraki & Eugenia Giannini & Zacharias Maroulis, 2020. "Economic Assessment of Cogeneration Systems in Operation," Energies, MDPI, vol. 13(9), pages 1-15, May.
    3. Giorgos Stamtsis & Haris Doukas, 2018. "Cooperation or Localization in European Capacity Markets? A Coalitional Game over Graph Approach," Energies, MDPI, vol. 11(6), pages 1-17, June.
    4. Jung, Seung Hwan & Feng, Tianjun, 2020. "Government subsidies for green technology development under uncertainty," European Journal of Operational Research, Elsevier, vol. 286(2), pages 726-739.
    5. Karol Tucki & Olga Orynycz & Andrzej Wasiak & Antoni Świć & Wojciech Dybaś, 2019. "Capacity Market Implementation in Poland: Analysis of a Survey on Consequences for the Electricity Market and for Energy Management," Energies, MDPI, vol. 12(5), pages 1-16, March.
    6. Galinato, Gregmar I. & Yoder, Jonathan K., 2010. "An integrated tax-subsidy policy for carbon emission reduction," Resource and Energy Economics, Elsevier, vol. 32(3), pages 310-326, August.
    7. Abolhosseini, Shahrouz & Heshmati, Almas, 2014. "The main support mechanisms to finance renewable energy development," Renewable and Sustainable Energy Reviews, Elsevier, vol. 40(C), pages 876-885.
    8. Couture, Toby & Gagnon, Yves, 2010. "An analysis of feed-in tariff remuneration models: Implications for renewable energy investment," Energy Policy, Elsevier, vol. 38(2), pages 955-965, February.
    9. Pablo-Romero, M.P. & Sánchez-Braza, A. & Pérez, M., 2013. "Incentives to promote solar thermal energy in Spain," Renewable and Sustainable Energy Reviews, Elsevier, vol. 22(C), pages 198-208.
    10. Falcone, Pasquale Marcello & Lopolito, Antonio & Sica, Edgardo, 2019. "Instrument mix for energy transition: A method for policy formulation," Technological Forecasting and Social Change, Elsevier, vol. 148(C).
    11. Luis R. Murillo‐Zamorano, 2004. "Economic Efficiency and Frontier Techniques," Journal of Economic Surveys, Wiley Blackwell, vol. 18(1), pages 33-77, February.
    12. Pasquale Marcello Falcone, 2020. "Environmental regulation and green investments: the role of green finance," International Journal of Green Economics, Inderscience Enterprises Ltd, vol. 14(2), pages 159-173.
    13. Yang, Xiaolei & He, Lingyun & Xia, Yufei & Chen, Yufeng, 2019. "Effect of government subsidies on renewable energy investments: The threshold effect," Energy Policy, Elsevier, vol. 132(C), pages 156-166.
    14. Francis Kemausuor & Muyiwa S. Adaramola & John Morken, 2018. "A Review of Commercial Biogas Systems and Lessons for Africa," Energies, MDPI, vol. 11(11), pages 1-21, November.
    15. Huijben, J.C.C.M. & Podoynitsyna, K.S. & van Rijn, M.L.B. & Verbong, G.P.J., 2016. "A review of governmental support instruments channeling PV market growth in the Flanders region of Belgium (2006–2013)," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 1282-1290.
    16. Peter Cramton & Axel Ockenfels & Steven Stoft, 2013. "Capacity Market Fundamentals," Economics of Energy & Environmental Policy, International Association for Energy Economics, vol. 0(Number 2).
    17. José L. Sousa & António G. Martins, 2018. "Portuguese Plan for Promoting Efficiency of Electricity End-Use: Policy, Methodology and Consumer Participation," Energies, MDPI, vol. 11(5), pages 1-19, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Krzysztof Zamasz & Jakub Stęchły & Aleksandra Komorowska & Przemysław Kaszyński, 2021. "The Impact of Fleet Electrification on Carbon Emissions: A Case Study from Poland," Energies, MDPI, vol. 14(20), pages 1-17, October.
    2. Maciej Ciołek & Izabela Emerling & Katarzyna Olejko & Beata Sadowska & Magdalena Wójcik-Jurkiewicz, 2022. "Assumptions of the Energy Policy of the Country versus Investment Outlays Related to the Purchase of Alternative Fuels: Poland as a Case Study," Energies, MDPI, vol. 15(5), pages 1-18, March.
    3. Yonghoon Im, 2022. "Assessment of the Impact of Renewable Energy Expansion on the Technological Competitiveness of the Cogeneration Model," Energies, MDPI, vol. 15(18), pages 1-27, September.
    4. Agnieszka Sompolska-Rzechuła & Agnieszka Kurdyś-Kujawska, 2021. "Towards Understanding Interactions between Sustainable Development Goals: The Role of Climate-Well-Being Linkages. Experiences of EU Countries," Energies, MDPI, vol. 14(7), pages 1-20, April.
    5. Zbigniew J. Makieła & Magdalena M. Stuss & Karolina Mucha-Kuś & Grzegorz Kinelski & Marcin Budziński & Janusz Michałek, 2022. "Smart City 4.0: Sustainable Urban Development in the Metropolis GZM," Sustainability, MDPI, vol. 14(6), pages 1-19, March.
    6. Grzegorz Zych & Borys Budka & Marzena Czarnecka & Grzegorz Kinelski & Magdalena Wojcik-Jurkiewicz, 2021. "Concept, Developments, and Consequences of Greenwashing," European Research Studies Journal, European Research Studies Journal, vol. 0(4B), pages 914-922.
    7. Przemysław Kaszyński & Aleksandra Komorowska & Krzysztof Zamasz & Grzegorz Kinelski & Jacek Kamiński, 2021. "Capacity Market and (the Lack of) New Investments: Evidence from Poland," Energies, MDPI, vol. 14(23), pages 1-17, November.
    8. Wojciech Drożdż & Grzegorz Kinelski & Marzena Czarnecka & Magdalena Wójcik-Jurkiewicz & Anna Maroušková & Grzegorz Zych, 2021. "Determinants of Decarbonization—How to Realize Sustainable and Low Carbon Cities?," Energies, MDPI, vol. 14(9), pages 1-19, May.
    9. Magdalena Wojcik-Jurkiewicz & Aleksandra Lubicz-Posochowska & Marzena Czarnecka & Grzegorz Kinelski & Beata Sadowska, 2021. "Legal Aspects of Sharing Economy: The Case of Games’ Platforms," European Research Studies Journal, European Research Studies Journal, vol. 0(Special 1), pages 1196-1210.
    10. Marzena Czarnecka & Grzegorz Kinelski & Magdalena Stefańska & Mateusz Grzesiak & Borys Budka, 2022. "Social Media Engagement in Shaping Green Energy Business Models," Energies, MDPI, vol. 15(5), pages 1-19, February.
    11. Mariusz Niekurzak & Wojciech Lewicki & Agnieszka Brelik, 2022. "The Challenges for Social and Economic Policy Related to the Energy Transformation - Analysis of Profitability and Minimizing the Risk of Deciding to Invest in a Home Micro-Installation," European Research Studies Journal, European Research Studies Journal, vol. 0(4), pages 144-159.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Abolhosseini, Shahrouz & Heshmati, Almas, 2014. "The main support mechanisms to finance renewable energy development," Renewable and Sustainable Energy Reviews, Elsevier, vol. 40(C), pages 876-885.
    2. Bogdan Klepacki & Barbara Kusto & Piotr Bórawski & Aneta Bełdycka-Bórawska & Konrad Michalski & Aleksandra Perkowska & Tomasz Rokicki, 2021. "Investments in Renewable Energy Sources in Basic Units of Local Government in Rural Areas," Energies, MDPI, vol. 14(11), pages 1-17, May.
    3. Jakub Jasiński & Mariusz Kozakiewicz & Maciej Sołtysik, 2021. "The Effectiveness of Energy Cooperatives Operating on the Capacity Market," Energies, MDPI, vol. 14(11), pages 1-20, May.
    4. Yu, Chin-Hsien & Wu, Xiuqin & Lee, Wen-Chieh & Zhao, Jinsong, 2021. "Resource misallocation in the Chinese wind power industry: The role of feed-in tariff policy," Energy Economics, Elsevier, vol. 98(C).
    5. Ramli, Makbul A.M. & Twaha, Ssennoga, 2015. "Analysis of renewable energy feed-in tariffs in selected regions of the globe: Lessons for Saudi Arabia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 45(C), pages 649-661.
    6. Jiang, Changmin, 2021. "Aviation tax and railway subsidy: An integrated policy," Transportation Research Part B: Methodological, Elsevier, vol. 146(C), pages 1-13.
    7. Jessica Thomsen & Christoph Weber, "undated". "How the design of retail prices, network charges, and levies affects profitability and operation of small-scale PV-Battery Storage Systems," EWL Working Papers 1903, University of Duisburg-Essen, Chair for Management Science and Energy Economics.
    8. Rui, Zhaobiao & Peng, Weicai & Qin, Ximei & Wang, Jun, 2023. "Assessing carbon cap-and-trade policies on hybrid renewable energy investments: Implications for pricing and capacity decisions," Resources Policy, Elsevier, vol. 86(PA).
    9. Coester, Andreas & Hofkes, Marjan W. & Papyrakis, Elissaios, 2018. "An optimal mix of conventional power systems in the presence of renewable energy: A new design for the German electricity market," Energy Policy, Elsevier, vol. 116(C), pages 312-322.
    10. López Prol, Javier, 2018. "Regulation, profitability and diffusion of photovoltaic grid-connected systems: A comparative analysis of Germany and Spain," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 1170-1181.
    11. Bustos, F. & Toledo, A. & Contreras, J. & Fuentes, A., 2016. "Sensitivity analysis of a photovoltaic solar plant in Chile," Renewable Energy, Elsevier, vol. 87(P1), pages 145-153.
    12. Mahdieh Rezagholizadeh & Younes Abdi, 2022. "Financial development and development of renewable energy technologies: A comparison of developing and developed countries," ECONOMICS AND POLICY OF ENERGY AND THE ENVIRONMENT, FrancoAngeli Editore, vol. 2022(1), pages 95-118.
    13. Aquila, Giancarlo & Pamplona, Edson de Oliveira & Queiroz, Anderson Rodrigo de & Rotela Junior, Paulo & Fonseca, Marcelo Nunes, 2017. "An overview of incentive policies for the expansion of renewable energy generation in electricity power systems and the Brazilian experience," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 1090-1098.
    14. Susana Silva & Isabel Soares & Oscar Afonso, 2021. "Assessing the double dividend of a third-generation environmental tax reform with resource substitution," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(10), pages 15145-15156, October.
    15. Kanters, Jouri & Wall, Maria, 2016. "A planning process map for solar buildings in urban environments," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 173-185.
    16. Koolen, Derck & Huisman, Ronald & Ketter, Wolfgang, 2022. "Decision strategies in sequential power markets with renewable energy," Energy Policy, Elsevier, vol. 167(C).
    17. Liu, Yunqiang & Liu, Sha & Shao, Xiaoyu & He, Yanqiu, 2022. "Policy spillover effect and action mechanism for environmental rights trading on green innovation: Evidence from China's carbon emissions trading policy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 153(C).
    18. Barbosa, Luciana & Ferrão, Paulo & Rodrigues, Artur & Sardinha, Alberto, 2018. "Feed-in tariffs with minimum price guarantees and regulatory uncertainty," Energy Economics, Elsevier, vol. 72(C), pages 517-541.
    19. Ahmed Gailani & Maher Al-Greer & Michael Short & Tracey Crosbie & Nashwan Dawood, 2020. "Lifetime Degradation Cost Analysis for Li-Ion Batteries in Capacity Markets using Accurate Physics-Based Models," Energies, MDPI, vol. 13(11), pages 1-21, June.
    20. Xu, Guangyue & Yang, Mengge & Li, Shuang & Jiang, Mingqi & Rehman, Hafizur, 2024. "Evaluating the effect of renewable energy investment on renewable energy development in China with panel threshold model," Energy Policy, Elsevier, vol. 187(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:21:p:5635-:d:436027. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.