IDEAS home Printed from https://ideas.repec.org/a/eee/trapol/v61y2018icp84-95.html
   My bibliography  Save this article

Improving predictions of public transport usage during disturbances based on smart card data

Author

Listed:
  • Yap, M.D.
  • Nijënstein, S.
  • van Oort, N.

Abstract

The availability of smart card data from public transport travelling the last decades allows analyzing current and predicting future public transport usage. Public transport models are commonly applied to predict ridership due to structural network changes, using a calibrated parameter set. Predicting the impact of planned disturbances, like temporary track closures, on public transport ridership is however an unexplored area. In the Netherlands, this area becomes increasingly important, given the many track closures operators are confronted with the last and upcoming years. We investigated the passenger impact of four planned disturbances on the public transport network of The Hague, the Netherlands, by comparing predicted and realized public transport ridership using smart card data. A three-step search procedure is applied to find a parameter set resulting in higher prediction accuracy. We found that in-vehicle time in rail-replacing bus services is perceived ≈1.1 times more negatively compared to in-vehicle time perception in the initial tram line. Waiting time for temporary rail-replacement bus services is found to be perceived ≈1.3 times higher, compared to waiting time perception for regular tram and bus services. Besides, passengers do not seem to perceive the theoretical benefit of the usually higher frequency of rail-replacement bus services compared to the frequency of the replaced tram line. For the different case studies, the new parameter set results in 3% up to 13% higher prediction accuracy compared to the default parameter set. It supports public transport operators to better predict the required supply of rail-replacement services and to predict the impact on their revenues.

Suggested Citation

  • Yap, M.D. & Nijënstein, S. & van Oort, N., 2018. "Improving predictions of public transport usage during disturbances based on smart card data," Transport Policy, Elsevier, vol. 61(C), pages 84-95.
  • Handle: RePEc:eee:trapol:v:61:y:2018:i:c:p:84-95
    DOI: 10.1016/j.tranpol.2017.10.010
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0967070X16307648
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.tranpol.2017.10.010?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Chuan Ding & Donggen Wang & Xiaolei Ma & Haiying Li, 2016. "Predicting Short-Term Subway Ridership and Prioritizing Its Influential Factors Using Gradient Boosting Decision Trees," Sustainability, MDPI, vol. 8(11), pages 1-16, October.
    2. Kouwenhoven, Marco & de Jong, Gerard C. & Koster, Paul & van den Berg, Vincent A.C. & Verhoef, Erik T. & Bates, John & Warffemius, Pim M.J., 2014. "New values of time and reliability in passenger transport in The Netherlands," Research in Transportation Economics, Elsevier, vol. 47(C), pages 37-49.
    3. Idris, Ahmed Osman & Nurul Habib, Khandker M. & Shalaby, Amer, 2015. "An investigation on the performances of mode shift models in transit ridership forecasting," Transportation Research Part A: Policy and Practice, Elsevier, vol. 78(C), pages 551-565.
    4. Arentze, Theo A. & Molin, Eric J.E., 2013. "Travelers’ preferences in multimodal networks: Design and results of a comprehensive series of choice experiments," Transportation Research Part A: Policy and Practice, Elsevier, vol. 58(C), pages 15-28.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Joshua Auld & Hubert Ley & Omer Verbas & Nima Golshani & Josiane Bechara & Angela Fontes, 2020. "A stated-preference intercept survey of transit-rider response to service disruptions," Public Transport, Springer, vol. 12(3), pages 557-585, October.
    2. Uğur Baç, 2020. "An Integrated SWARA-WASPAS Group Decision Making Framework to Evaluate Smart Card Systems for Public Transportation," Mathematics, MDPI, vol. 8(10), pages 1-24, October.
    3. Ana Belén Rodríguez González & Mark Richard Wilby & Juan José Vinagre Díaz & Rubén Fernández Pozo & Carmen Sánchez Ávila, 2023. "Utilization rate of the fleet: a novel performance metric for a novel shared mobility," Transportation, Springer, vol. 50(1), pages 285-301, February.
    4. Yap, Menno & Munizaga, Marcela, 2018. "Workshop 8 report: Big data in the digital age and how it can benefit public transport users," Research in Transportation Economics, Elsevier, vol. 69(C), pages 615-620.
    5. Ikki Kim & Hyoung-Chul Kim & Dong-Jeong Seo & Jung In Kim, 2020. "Calibration of a transit route choice model using revealed population data of smartcard in a multimodal transit network," Transportation, Springer, vol. 47(5), pages 2179-2202, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yap, Menno & Munizaga, Marcela, 2018. "Workshop 8 report: Big data in the digital age and how it can benefit public transport users," Research in Transportation Economics, Elsevier, vol. 69(C), pages 615-620.
    2. Wang, Senlei & Correia, Gonçalo Homem de Almeida & Lin, Hai Xiang, 2022. "Modeling the competition between multiple Automated Mobility on-Demand operators: An agent-based approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 605(C).
    3. Correia, Gonçalo Homem de Almeida & Looff, Erwin & van Cranenburgh, Sander & Snelder, Maaike & van Arem, Bart, 2019. "On the impact of vehicle automation on the value of travel time while performing work and leisure activities in a car: Theoretical insights and results from a stated preference survey," Transportation Research Part A: Policy and Practice, Elsevier, vol. 119(C), pages 359-382.
    4. Bouscasse, Hélène & de Lapparent, Matthieu, 2019. "Perceived comfort and values of travel time savings in the Rhône-Alpes Region," Transportation Research Part A: Policy and Practice, Elsevier, vol. 124(C), pages 370-387.
    5. van Wee, Bert & Bohte, Wendy & Molin, Eric & Arentze, Theo & Liao, Feixiong, 2014. "Policies for synchronization in the transport–land-use system," Transport Policy, Elsevier, vol. 31(C), pages 1-9.
    6. Toşa, Cristian & Sato, Hitomi & Morikawa, Takayuki & Miwa, Tomio, 2018. "Commuting behavior in emerging urban areas: Findings of a revealed-preferences and stated-intentions survey in Cluj-Napoca, Romania," Journal of Transport Geography, Elsevier, vol. 68(C), pages 78-93.
    7. Zhang, Jie & Wang, David Z.W. & Meng, Meng, 2018. "Which service is better on a linear travel corridor: Park & ride or on-demand public bus?," Transportation Research Part A: Policy and Practice, Elsevier, vol. 118(C), pages 803-818.
    8. de Jong, Gerard & Kouwenhoven, Marco & Ruijs, Kim & van Houwe, Pieter & Borremans, Dana, 2016. "A time-period choice model for road freight transport in Flanders based on stated preference data," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 86(C), pages 20-31.
    9. Egu, Oscar & Bonnel, Patrick, 2021. "Medium-term public transit route ridership forecasting: What, how and why? A case study in Lyon," Transport Policy, Elsevier, vol. 105(C), pages 124-133.
    10. Zgheib, Najib & Abou-Zeid, Maya & Kaysi, Isam, 2020. "Modeling demand for ridesourcing as feeder for high capacity mass transit systems with an application to the planned Beirut BRT," Transportation Research Part A: Policy and Practice, Elsevier, vol. 138(C), pages 70-91.
    11. Maria Börjesson & Jonas Eliasson, 2019. "Should values of time be differentiated?," Transport Reviews, Taylor & Francis Journals, vol. 39(3), pages 357-375, May.
    12. Vincent A.C. van den Berg & Erik T. Verhoef, 2015. "Robot Cars and Dynamic Bottleneck Congestion: The Effects on Capacity, Value of Time and Preference Heterogeneity," Tinbergen Institute Discussion Papers 15-062/VIII, Tinbergen Institute, revised 11 Jul 2016.
    13. Xiao, Yu & Fukuda, Daisuke, 2015. "On the cost of misperceived travel time variability," Transportation Research Part A: Policy and Practice, Elsevier, vol. 75(C), pages 96-112.
    14. Kouwenhoven, Marco & de Jong, Gerard, 2018. "Value of travel time as a function of comfort," Journal of choice modelling, Elsevier, vol. 28(C), pages 97-107.
    15. Chen, Kee-Kuo & Ho, Hui-Ping & Chang, Ching-Ter, 2015. "Estimating attributes importance for container shipping industry by closing the listening gap with maximum convergent validity," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 79(C), pages 145-163.
    16. Kingsley Adjenughwure & Basil Papadopoulos, 2019. "Towards a Fair and More Transparent Rule-Based Valuation of Travel Time Savings," Sustainability, MDPI, vol. 11(4), pages 1-19, February.
    17. McQueen, Michael & Clifton, Kelly J., 2022. "Assessing the perception of E-scooters as a practical and equitable first-mile/last-mile solution," Transportation Research Part A: Policy and Practice, Elsevier, vol. 165(C), pages 395-418.
    18. Li, Hao & Gao, Kun & Tu, Huizhao, 2017. "Variations in mode-specific valuations of travel time reliability and in-vehicle crowding: Implications for demand estimation," Transportation Research Part A: Policy and Practice, Elsevier, vol. 103(C), pages 250-263.
    19. Lissy La Paix & Karst Geurs, 2015. "Scenarios for measuring station-based impedances in a national transport model," ERSA conference papers ersa15p1310, European Regional Science Association.
    20. Tu, Wei & Cao, Rui & Yue, Yang & Zhou, Baoding & Li, Qiuping & Li, Qingquan, 2018. "Spatial variations in urban public ridership derived from GPS trajectories and smart card data," Journal of Transport Geography, Elsevier, vol. 69(C), pages 45-57.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:trapol:v:61:y:2018:i:c:p:84-95. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/30473/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.