IDEAS home Printed from https://ideas.repec.org/a/eee/transa/v78y2015icp551-565.html
   My bibliography  Save this article

An investigation on the performances of mode shift models in transit ridership forecasting

Author

Listed:
  • Idris, Ahmed Osman
  • Nurul Habib, Khandker M.
  • Shalaby, Amer

Abstract

This paper aims at investigating the over-prediction of public transit ridership by traditional mode choice models estimated using revealed preference data. Five different types of models are estimated and analysed, namely a traditional Revealed Preference (RP) data-based mode choice model, a hybrid mode choice model with a latent variable, a Stated Preference (SP) data-based mode switching model, a joint RP/SP mode switching model, and a hybrid mode switching model with a latent variable. A comparison of the RP data-based mode choice model with the mode choice models including a latent variable showed that the inclusion of behavioural factors (especially habit formation) significantly improved the models. The SP data-based mode switching models elucidated the reasons why traditional models tend to over-predict transit ridership by revealing the role played by different transit level-of-service attributes and their relative importance to mode switching decisions. The results showed that traditional attributes (e.g. travel cost and time) are of lower importance to mode switching behaviour than behavioural factors (e.g. habit formation towards car driving) and other transit service design attributes (e.g. crowding level, number of transfers, and schedule delays). The findings of this study provide general guidelines for developing a variety of transit ridership forecasting models depending on the availability of data and the experience of the planner.

Suggested Citation

  • Idris, Ahmed Osman & Nurul Habib, Khandker M. & Shalaby, Amer, 2015. "An investigation on the performances of mode shift models in transit ridership forecasting," Transportation Research Part A: Policy and Practice, Elsevier, vol. 78(C), pages 551-565.
  • Handle: RePEc:eee:transa:v:78:y:2015:i:c:p:551-565
    DOI: 10.1016/j.tra.2015.06.012
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0965856415001780
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.tra.2015.06.012?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Vredin Johansson, Maria & Heldt, Tobias & Johansson, Per, 2006. "The effects of attitudes and personality traits on mode choice," Transportation Research Part A: Policy and Practice, Elsevier, vol. 40(6), pages 507-525, July.
    2. Víctor Cantillo & Juan de Dios Ortúzar & Huw C. W. L. Williams, 2007. "Modeling Discrete Choices in the Presence of Inertia and Serial Correlation," Transportation Science, INFORMS, vol. 41(2), pages 195-205, May.
    3. Clifford Winston, 2000. "Government Failure in Urban Transportation," Fiscal Studies, Institute for Fiscal Studies, vol. 21(4), pages 403-425, December.
    4. Barff, Richard & MacKay, David & Olshavsky, Richard W, 1982. "A Selective Review of Travel-Mode Choice Models," Journal of Consumer Research, Journal of Consumer Research Inc., vol. 8(4), pages 370-380, March.
    5. Roger Mackett, 2003. "Why do people use their cars for short trips?," Transportation, Springer, vol. 30(3), pages 329-349, August.
    6. Khandker Nurul Habib & Yuan Tian & Hamid Zaman, 2011. "Modelling commuting mode choice with explicit consideration of carpool in the choice set formation," Transportation, Springer, vol. 38(4), pages 587-604, July.
    7. Cristian Domarchi & Alejandro Tudela & Angélica González, 2008. "Effect of attitudes, habit and affective appraisal on mode choice: an application to university workers," Transportation, Springer, vol. 35(5), pages 585-599, August.
    8. Chorus, Caspar G. & Timmermans, Harry J.P., 2009. "Measuring user benefits of changes in the transport system when traveler awareness is limited," Transportation Research Part A: Policy and Practice, Elsevier, vol. 43(5), pages 536-547, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Dandan Xu & Yang Bain & Shinan Shu & Xiaodong Zhang, 2022. "Staged Transition Process from Driving to Bicycling Based on the Effects of Latent Variables," Sustainability, MDPI, vol. 14(18), pages 1-14, September.
    2. Toşa, Cristian & Sato, Hitomi & Morikawa, Takayuki & Miwa, Tomio, 2018. "Commuting behavior in emerging urban areas: Findings of a revealed-preferences and stated-intentions survey in Cluj-Napoca, Romania," Journal of Transport Geography, Elsevier, vol. 68(C), pages 78-93.
    3. Chuan Ding & Donggen Wang & Xiaolei Ma & Haiying Li, 2016. "Predicting Short-Term Subway Ridership and Prioritizing Its Influential Factors Using Gradient Boosting Decision Trees," Sustainability, MDPI, vol. 8(11), pages 1-16, October.
    4. Zhang, Jie & Wang, David Z.W. & Meng, Meng, 2018. "Which service is better on a linear travel corridor: Park & ride or on-demand public bus?," Transportation Research Part A: Policy and Practice, Elsevier, vol. 118(C), pages 803-818.
    5. Tanjeeb Ahmed & Michael Hyland, 2023. "Exploring the role of ride-hailing in trip chains," Transportation, Springer, vol. 50(3), pages 959-1002, June.
    6. Yap, M.D. & Nijënstein, S. & van Oort, N., 2018. "Improving predictions of public transport usage during disturbances based on smart card data," Transport Policy, Elsevier, vol. 61(C), pages 84-95.
    7. Hudyeron Rocha & António Lobo & José Pedro Tavares & Sara Ferreira, 2023. "Exploring Modal Choices for Sustainable Urban Mobility: Insights from the Porto Metropolitan Area in Portugal," Sustainability, MDPI, vol. 15(20), pages 1-20, October.
    8. Tran, Yen & Yamamoto, Toshiyuki & Sato, Hitomi, 2020. "The influences of environmentalism and attitude towards physical activity on mode choice: The new evidences," Transportation Research Part A: Policy and Practice, Elsevier, vol. 134(C), pages 211-226.
    9. Rashedi, Zohreh & Mahmoud, Mohamed & Hasnine, Sami & Habib, Khandker Nurul, 2017. "On the factors affecting the choice of regional transit for commuting in Greater Toronto and Hamilton Area: Application of an advanced RP-SP choice model," Transportation Research Part A: Policy and Practice, Elsevier, vol. 105(C), pages 1-13.
    10. Yao, Di & Xu, Liqun & Zhang, Chunqin & Li, Jinpei, 2021. "Revisiting the interactions between bus service quality, car ownership and mode use: A case study in Changzhou, China," Transportation Research Part A: Policy and Practice, Elsevier, vol. 154(C), pages 329-344.
    11. Kun Gao & Minhua Shao & Kay W. Axhausen & Lijun Sun & Huizhao Tu & Yihong Wang, 2022. "Inertia effects of past behavior in commuting modal shift behavior: interactions, variations and implications for demand estimation," Transportation, Springer, vol. 49(4), pages 1063-1097, August.
    12. Yap, Menno & Munizaga, Marcela, 2018. "Workshop 8 report: Big data in the digital age and how it can benefit public transport users," Research in Transportation Economics, Elsevier, vol. 69(C), pages 615-620.
    13. Wang, Yu & Wang, Yacan & Ettema, Dick & Mao, Zidan & Charlton, Samuel G. & Zhou, Huiyu, 2020. "Commuter value perceptions in peak avoidance behavior: An empirical study in the Beijing subway system," Transportation Research Part A: Policy and Practice, Elsevier, vol. 139(C), pages 70-84.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lois, David & López-Sáez, Mercedes, 2009. "The relationship between instrumental, symbolic and affective factors as predictors of car use: A structural equation modeling approach," Transportation Research Part A: Policy and Practice, Elsevier, vol. 43(9-10), pages 790-799, November.
    2. Di Ciommo, Floridea & Comendador, Julio & López-Lambas, María Eugenia & Cherchi, Elisabetta & Ortúzar, Juan de Dios, 2014. "Exploring the role of social capital influence variables on travel behaviour," Transportation Research Part A: Policy and Practice, Elsevier, vol. 68(C), pages 46-55.
    3. Rahman, Mohammad Lutfur & Baker, Douglas, 2018. "Modelling induced mode switch behaviour in Bangladesh: A multinomial logistic regression approach," Transport Policy, Elsevier, vol. 71(C), pages 81-91.
    4. Sascha von Behren & Lisa Bönisch & Ulrich Niklas & Bastian Chlond, 2020. "Revealing Motives for Car Use in Modern Cities—A Case Study from Berlin and San Francisco," Sustainability, MDPI, vol. 12(13), pages 1-18, June.
    5. Bouscasse, H., 2018. "Integrated choice and latent variable models: A literature review on mode choice," Working Papers 2018-07, Grenoble Applied Economics Laboratory (GAEL).
    6. Schmid, Basil & Becker, Felix & Axhausen, Kay W. & Widmer, Paul & Stein, Petra, 2023. "A simultaneous model of residential location, mobility tool ownership and mode choice using latent variables," Transportation Research Part A: Policy and Practice, Elsevier, vol. 178(C).
    7. Di Ciommo, Floridea & Monzón, Andrés & Fernandez-Heredia, Alvaro, 2013. "Improving the analysis of road pricing acceptability surveys by using hybrid models," Transportation Research Part A: Policy and Practice, Elsevier, vol. 49(C), pages 302-316.
    8. Macea, Luis F. & Cantillo, Victor & Arellana, Julian, 2018. "Influence of attitudes and perceptions on deprivation cost functions," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 112(C), pages 125-141.
    9. Van Eenoo, Eva & Boussauw, Kobe, 2023. "“That's not feasible without a car”: An exploration of car-dependent practices," Transport Policy, Elsevier, vol. 144(C), pages 1-10.
    10. Muhammad Waqas & Qian-li Dong & Naveed Ahmad & Yuming Zhu & Muhammad Nadeem, 2018. "Understanding Acceptability towards Sustainable Transportation Behavior: A Case Study of China," Sustainability, MDPI, vol. 10(10), pages 1-24, October.
    11. Bruno, Matthew & Nikolaeva, Anna, 2020. "Towards a maintenance-based approach to mode shift: Comparing two cases of Dutch cycling policy using social practice theory," Journal of Transport Geography, Elsevier, vol. 86(C).
    12. Khandker M. Nurul Habib & Md. Hamid Zaman, 2012. "Effects of incorporating latent and attitudinal information in mode choice models," Transportation Planning and Technology, Taylor & Francis Journals, vol. 35(5), pages 561-576, June.
    13. Can, Vo Van, 2013. "Estimation of travel mode choice for domestic tourists to Nha Trang using the multinomial probit model," Transportation Research Part A: Policy and Practice, Elsevier, vol. 49(C), pages 149-159.
    14. Min, Jihoon & Azevedo, Inês L. & Michalek, Jeremy & de Bruin, Wändi Bruine, 2014. "Labeling energy cost on light bulbs lowers implicit discount rates," Ecological Economics, Elsevier, vol. 97(C), pages 42-50.
    15. Hélène Bouscasse, 2018. "Integrated choice and latent variable models: A literature review on mode choice," Working Papers hal-01795630, HAL.
    16. Anders Jensen & Elisabetta Cherchi & Juan Dios Ortúzar, 2014. "A long panel survey to elicit variation in preferences and attitudes in the choice of electric vehicles," Transportation, Springer, vol. 41(5), pages 973-993, September.
    17. Samira Ramezani & Barbara Pizzo & Elizabeth Deakin, 2018. "An integrated assessment of factors affecting modal choice: towards a better understanding of the causal effects of built environment," Transportation, Springer, vol. 45(5), pages 1351-1387, September.
    18. Hoffmann, Christin & Abraham, Charles & Skippon, Stephen M. & White, Mathew P., 2018. "Cognitive construction of travel modes among high-mileage car users and non-car users – A Repertory Grid analysis," Transportation Research Part A: Policy and Practice, Elsevier, vol. 118(C), pages 216-233.
    19. Daziano, Ricardo A. & Chiew, Esther, 2012. "Electric vehicles rising from the dead: Data needs for forecasting consumer response toward sustainable energy sources in personal transportation," Energy Policy, Elsevier, vol. 51(C), pages 876-894.
    20. Macea, Luis F. & Serrano, Iván & Carcache-Guas, Camila, 2023. "A reservation-based parking behavioral model for parking demand management in urban areas," Socio-Economic Planning Sciences, Elsevier, vol. 86(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transa:v:78:y:2015:i:c:p:551-565. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/547/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.