IDEAS home Printed from https://ideas.repec.org/a/eee/trapol/v24y2012icp284-295.html
   My bibliography  Save this article

The determinants of fuel use in the trucking industry—volume, fleet characteristics and the rebound effect

Author

Listed:
  • De Borger, Bruno
  • Mulalic, Ismir

Abstract

This paper studies the determinants of fuel use in the trucking industry in Denmark, using aggregate time series data for the period 1980–2007. The model captures the main linkages between the demand for freight transport, the characteristics of the vehicle fleet, and the demand for fuel. Results include the following. First, we precisely define and estimate a rebound effect of improvements in fuel efficiency in the trucking industry: behavioural adjustments in the industry imply that an exogenous improvement in fuel efficiency reduces fuel use less than proportionately. Our best estimate of this effect is approximately 10% in the short run and 17% in the long run, so that a 1% improvement in fuel efficiency reduces fuel use by 0.90% (short-run) to 0.83% (long-run). Second, we find that higher fuel prices raise the average capacity of trucks, and they induce firms to invest in newer, typically more fuel efficient, trucks. Third, these adjustments and the rebound effect jointly imply that the effect of higher fuel prices on fuel use in the trucking industry is fairly small; estimated price elasticities are −0.13 and −0.22 in the short run and in the long run, respectively. The empirical results of this paper have implications for judging the implications of fuel efficiency standards and regulations with respect to larger trucks in the EU.

Suggested Citation

  • De Borger, Bruno & Mulalic, Ismir, 2012. "The determinants of fuel use in the trucking industry—volume, fleet characteristics and the rebound effect," Transport Policy, Elsevier, vol. 24(C), pages 284-295.
  • Handle: RePEc:eee:trapol:v:24:y:2012:i:c:p:284-295
    DOI: 10.1016/j.tranpol.2012.08.011
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0967070X12001473
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.tranpol.2012.08.011?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kveiborg, Ole & Fosgerau, Mogens, 2007. "Decomposing the decoupling of Danish road freight traffic growth and economic growth," Transport Policy, Elsevier, vol. 14(1), pages 39-48, January.
    2. Rich, J. & Kveiborg, O. & Hansen, C.O., 2011. "On structural inelasticity of modal substitution in freight transport," Journal of Transport Geography, Elsevier, vol. 19(1), pages 134-146.
    3. Kenneth A. Small & Kurt Van Dender, 2007. "Fuel Efficiency and Motor Vehicle Travel: The Declining Rebound Effect," The Energy Journal, International Association for Energy Economics, vol. 0(Number 1), pages 25-52.
    4. Parry, Ian W.H., 2008. "How should heavy-duty trucks be taxed?," Journal of Urban Economics, Elsevier, vol. 63(2), pages 651-668, March.
    5. A. Greening, Lorna & Greene, David L. & Difiglio, Carmen, 2000. "Energy efficiency and consumption -- the rebound effect -- a survey," Energy Policy, Elsevier, vol. 28(6-7), pages 389-401, June.
    6. Rickard Bergqvist & Sönke Behrends, 2011. "Assessing the Effects of Longer Vehicles: The Case of Pre- and Post-haulage in Intermodal Transport Chains," Transport Reviews, Taylor & Francis Journals, vol. 31(5), pages 591-602.
    7. Forkenbrock, David J., 1999. "External costs of intercity truck freight transportation," Transportation Research Part A: Policy and Practice, Elsevier, vol. 33(7-8), pages 505-526.
    8. Matos, Fernando J.F. & Silva, Francisco J.F., 2011. "The rebound effect on road freight transport: Empirical evidence from Portugal," Energy Policy, Elsevier, vol. 39(5), pages 2833-2841, May.
    9. Hymel, Kent M. & Small, Kenneth A. & Dender, Kurt Van, 2010. "Induced demand and rebound effects in road transport," Transportation Research Part B: Methodological, Elsevier, vol. 44(10), pages 1220-1241, December.
    10. Thomas N. Hubbard, 2003. "Information, Decisions, and Productivity: On-Board Computers and Capacity Utilization in Trucking," American Economic Review, American Economic Association, vol. 93(4), pages 1328-1353, September.
    11. George P. Baker & Thomas N. Hubbard, 2003. "Make Versus Buy in Trucking: Asset Ownership, Job Design, and Information," American Economic Review, American Economic Association, vol. 93(3), pages 551-572, June.
    12. Bonney, M. C., 1994. "Trends in inventory management," International Journal of Production Economics, Elsevier, vol. 35(1-3), pages 107-114, June.
    13. Sathaye, Nakul & Horvath, Arpad & Madanat, Samer, 2010. "Unintended impacts of increased truck loads on pavement supply-chain emissions," Transportation Research Part A: Policy and Practice, Elsevier, vol. 44(1), pages 1-15, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. De Borger, Bruno & Mulalic, Ismir & Rouwendal, Jan, 2016. "Measuring the rebound effect with micro data: A first difference approach," Journal of Environmental Economics and Management, Elsevier, vol. 79(C), pages 1-17.
    2. Ruzzenenti, Franco & Basosi, Riccardo, 2017. "Modelling the rebound effect with network theory: An insight into the European freight transport sector," Energy, Elsevier, vol. 118(C), pages 272-283.
    3. Liu, Wen & Lund, Henrik & Mathiesen, Brian Vad, 2013. "Modelling the transport system in China and evaluating the current strategies towards the sustainable transport development," Energy Policy, Elsevier, vol. 58(C), pages 347-357.
    4. Vierth, Inge, 2013. "Why do CO2 emissions from heavy road freight transports increase in spite of higher fuel prices?," Working papers in Transport Economics 2013:4, CTS - Centre for Transport Studies Stockholm (KTH and VTI).
    5. Wang, Zhaohua & Lu, Milin, 2014. "An empirical study of direct rebound effect for road freight transport in China," Applied Energy, Elsevier, vol. 133(C), pages 274-281.
    6. Muhammad Omer, 2018. "Estimating Elasticity of Transport Fuel Demand in Pakistan," SBP Working Paper Series 96, State Bank of Pakistan, Research Department.
    7. Galvin, Ray & Martulli, Alessandro & Ruzzenenti, Franco, 2021. "Does power curb energy efficiency? Evidence from two decades of European truck tests," Energy, Elsevier, vol. 232(C).
    8. Zhang, Yue-Jun & Liu, Zhao & Zhou, Si-Ming & Qin, Chang-Xiong & Zhang, Huan, 2018. "The impact of China's Central Rise Policy on carbon emissions at the stage of operation in road sector," Economic Modelling, Elsevier, vol. 71(C), pages 159-173.
    9. Manuel Frondel & Colin Vance, 2018. "Drivers’ response to fuel taxes and efficiency standards: evidence from Germany," Transportation, Springer, vol. 45(3), pages 989-1001, May.
    10. Llorca, Manuel & Jamasb, Tooraj, 2017. "Energy efficiency and rebound effect in European road freight transport," Transportation Research Part A: Policy and Practice, Elsevier, vol. 101(C), pages 98-110.
    11. Yumeng Mao & Xuemei Li, 2023. "A Review of Research on the Impact Mechanisms of Green Development in the Transportation Industry," Sustainability, MDPI, vol. 15(23), pages 1-26, December.
    12. Odeck, James & Johansen, Kjell, 2016. "Elasticities of fuel and traffic demand and the direct rebound effects: An econometric estimation in the case of Norway," Transportation Research Part A: Policy and Practice, Elsevier, vol. 83(C), pages 1-13.
    13. Tamannaei, Mohammad & Zarei, Hamid & Rasti-Barzoki, Morteza, 2021. "A game theoretic approach to sustainable freight transportation: Competition between road and intermodal road–rail systems with government intervention," Transportation Research Part B: Methodological, Elsevier, vol. 153(C), pages 272-295.
    14. Abate, Megersa, 2014. "Does fuel price affect trucking industry’s network characteristics?: evidence from Denmark," Working papers in Transport Economics 2014:26, CTS - Centre for Transport Studies Stockholm (KTH and VTI).
    15. Ivan T. Herrmann & Michael Z. Hauschild & Michael D. Sohn & Thomas E. McKone, 2014. "Confronting Uncertainty in Life Cycle Assessment Used for Decision Support," Journal of Industrial Ecology, Yale University, vol. 18(3), pages 366-379, May.
    16. Franco Ruzzenenti, 2018. "The Prism of Elasticity in Rebound Effect Modelling: An Insight from the Freight Transport Sector," Sustainability, MDPI, vol. 10(8), pages 1-13, August.
    17. Hans Jakob Walnum & Carlo Aall & Søren Løkke, 2014. "Can Rebound Effects Explain Why Sustainable Mobility Has Not Been Achieved?," Sustainability, MDPI, vol. 6(12), pages 1-28, December.
    18. Tscharaktschiew, Stefan, 2014. "Shedding light on the appropriateness of the (high) gasoline tax level in Germany," Economics of Transportation, Elsevier, vol. 3(3), pages 189-210.
    19. Gaolu Zou & K. W. Chau, 2019. "Long- and Short-Run Effects of Fuel Prices on Freight Transportation Volumes in Shanghai," Sustainability, MDPI, vol. 11(18), pages 1-12, September.
    20. Motamedi, Sina, 2016. "The Effect of Changes in Fuel Prices on the Use of Road Transportation in Ontario," 57th Transportation Research Forum (51st CTRF) Joint Conference, Toronto, Ontario, May 1-4, 2016 319275, Transportation Research Forum.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Moshiri, Saeed, 2020. "Consumer responses to gasoline price and non-price policies," Energy Policy, Elsevier, vol. 137(C).
    2. Llorca, Manuel & Jamasb, Tooraj, 2017. "Energy efficiency and rebound effect in European road freight transport," Transportation Research Part A: Policy and Practice, Elsevier, vol. 101(C), pages 98-110.
    3. Wang, Zhaohua & Lu, Milin, 2014. "An empirical study of direct rebound effect for road freight transport in China," Applied Energy, Elsevier, vol. 133(C), pages 274-281.
    4. Gomez, Juan & Vassallo, José Manuel, 2015. "Evolution over time of heavy vehicle volume in toll roads: A dynamic panel data to identify key explanatory variables in Spain," Transportation Research Part A: Policy and Practice, Elsevier, vol. 74(C), pages 282-297.
    5. Winebrake, James J. & Green, Erin H. & Comer, Bryan & Corbett, James J. & Froman, Sarah, 2012. "Estimating the direct rebound effect for on-road freight transportation," Energy Policy, Elsevier, vol. 48(C), pages 252-259.
    6. De Borger, Bruno & Mulalic, Ismir & Rouwendal, Jan, 2016. "Measuring the rebound effect with micro data: A first difference approach," Journal of Environmental Economics and Management, Elsevier, vol. 79(C), pages 1-17.
    7. Zhang, Yue-Jun & Liu, Zhao & Zhou, Si-Ming & Qin, Chang-Xiong & Zhang, Huan, 2018. "The impact of China's Central Rise Policy on carbon emissions at the stage of operation in road sector," Economic Modelling, Elsevier, vol. 71(C), pages 159-173.
    8. Lin, Boqiang & Liu, Xia, 2013. "Reform of refined oil product pricing mechanism and energy rebound effect for passenger transportation in China," Energy Policy, Elsevier, vol. 57(C), pages 329-337.
    9. Creutzig, Felix & McGlynn, Emily & Minx, Jan & Edenhofer, Ottmar, 2011. "Climate policies for road transport revisited (I): Evaluation of the current framework," Energy Policy, Elsevier, vol. 39(5), pages 2396-2406, May.
    10. Moshiri, Saeed & Aliyev, Kamil, 2017. "Rebound effect of efficiency improvement in passenger cars on gasoline consumption in Canada," Ecological Economics, Elsevier, vol. 131(C), pages 330-341.
    11. Wang, H. & Zhou, P. & Zhou, D.Q., 2012. "An empirical study of direct rebound effect for passenger transport in urban China," Energy Economics, Elsevier, vol. 34(2), pages 452-460.
    12. Su, Qing, 2011. "Induced motor vehicle travel from improved fuel efficiency and road expansion," Energy Policy, Elsevier, vol. 39(11), pages 7257-7264.
    13. Lin, Boqiang & Chen, Yufang & Zhang, Guoliang, 2017. "Technological progress and rebound effect in China's nonferrous metals industry: An empirical study," Energy Policy, Elsevier, vol. 109(C), pages 520-529.
    14. Anas, Alex & Hiramatsu, Tomoru, 2012. "The effect of the price of gasoline on the urban economy: From route choice to general equilibrium," Transportation Research Part A: Policy and Practice, Elsevier, vol. 46(6), pages 855-873.
    15. Sylvain Weber & Mehdi Farsi, 2014. "Travel distance, fuel efficiency, and vehicle weight: An estimation of the rebound effect using individual data in Switzerland," IRENE Working Papers 14-03, IRENE Institute of Economic Research.
    16. Dimitropoulos, Alexandros & Oueslati, Walid & Sintek, Christina, 2018. "The rebound effect in road transport: A meta-analysis of empirical studies," Energy Economics, Elsevier, vol. 75(C), pages 163-179.
    17. Manuel Frondel & Colin Vance, 2018. "Drivers’ response to fuel taxes and efficiency standards: evidence from Germany," Transportation, Springer, vol. 45(3), pages 989-1001, May.
    18. Hans Jakob Walnum & Carlo Aall & Søren Løkke, 2014. "Can Rebound Effects Explain Why Sustainable Mobility Has Not Been Achieved?," Sustainability, MDPI, vol. 6(12), pages 1-28, December.
    19. Matiaske, Wenzel & Menges, Roland & Spiess, Martin, 2012. "Modifying the rebound: It depends! Explaining mobility behavior on the basis of the German socio-economic panel," Energy Policy, Elsevier, vol. 41(C), pages 29-35.
    20. Greene, David L. & Welch, Jilleah G., 2018. "Impacts of fuel economy improvements on the distribution of income in the U.S," Energy Policy, Elsevier, vol. 122(C), pages 528-541.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:trapol:v:24:y:2012:i:c:p:284-295. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/30473/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.