Modeling indoor-level non-pharmaceutical interventions during the COVID-19 pandemic: A pedestrian dynamics-based microscopic simulation approach
Author
Abstract
Suggested Citation
DOI: 10.1016/j.tranpol.2021.05.004
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Jérôme Adda, 2016.
"Economic Activity and the Spread of Viral Diseases: Evidence from High Frequency Data,"
The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 131(2), pages 891-941.
- Adda, Jérôme, 2015. "Economic Activity and the Spread of Viral Diseases: Evidence from High Frequency Data," CEPR Discussion Papers 10842, C.E.P.R. Discussion Papers.
- Adda, Jérôme, 2015. "Economic Activity and the Spread of Viral Diseases: Evidence from High Frequency Data," IZA Discussion Papers 9326, Institute of Labor Economics (IZA).
- Dirk Helbing & Illés Farkas & Tamás Vicsek, 2000. "Simulating dynamical features of escape panic," Nature, Nature, vol. 407(6803), pages 487-490, September.
- Douglas Almond, 2006. "Is the 1918 Influenza Pandemic Over? Long-Term Effects of In Utero Influenza Exposure in the Post-1940 U.S. Population," Journal of Political Economy, University of Chicago Press, vol. 114(4), pages 672-712, August.
- Kleczkowski, Adam & Grenfell, Bryan T., 1999. "Mean-field-type equations for spread of epidemics: the ‘small world’ model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 274(1), pages 355-360.
- Ziyou Gao & Yunchao Qu & Xingang Li & Jiancheng Long & Hai-Jun Huang, 2014. "Simulating the Dynamic Escape Process in Large Public Places," Operations Research, INFORMS, vol. 62(6), pages 1344-1357, December.
- Neil M. Ferguson & Derek A. T. Cummings & Christophe Fraser & James C. Cajka & Philip C. Cooley & Donald S. Burke, 2006. "Strategies for mitigating an influenza pandemic," Nature, Nature, vol. 442(7101), pages 448-452, July.
- Hoogendoorn, S. P. & Bovy, P. H. L., 2004. "Pedestrian route-choice and activity scheduling theory and models," Transportation Research Part B: Methodological, Elsevier, vol. 38(2), pages 169-190, February.
- Lei Zhang & David Levinson, 2004. "An Agent-Based Approach to Travel Demand Modeling: An Exploratory Analysis," Working Papers 200405, University of Minnesota: Nexus Research Group.
- Dirk Helbing & Lubos Buzna & Anders Johansson & Torsten Werner, 2005. "Self-Organized Pedestrian Crowd Dynamics: Experiments, Simulations, and Design Solutions," Transportation Science, INFORMS, vol. 39(1), pages 1-24, February.
- Hänseler, Flurin S. & van den Heuvel, Jeroen P.A. & Cats, Oded & Daamen, Winnie & Hoogendoorn, Serge P., 2020. "A passenger-pedestrian model to assess platform and train usage from automated data," Transportation Research Part A: Policy and Practice, Elsevier, vol. 132(C), pages 948-968.
- Stephen Eubank & Hasan Guclu & V. S. Anil Kumar & Madhav V. Marathe & Aravind Srinivasan & Zoltán Toroczkai & Nan Wang, 2004. "Modelling disease outbreaks in realistic urban social networks," Nature, Nature, vol. 429(6988), pages 180-184, May.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Masahiko Haraguchi & Akihiko Nishino & Akira Kodaka & Maura Allaire & Upmanu Lall & Liao Kuei-Hsien & Kaya Onda & Kota Tsubouchi & Naohiko Kohtake, 2022. "Human mobility data and analysis for urban resilience: A systematic review," Environment and Planning B, , vol. 49(5), pages 1507-1535, June.
- Sparnaaij, Martijn & Yuan, Yufei & Daamen, Winnie & Duives, Dorine C., 2024. "Using pedestrian modelling to inform virus transmission mitigation policies: A novel activity scheduling model to enable virus transmission risk assessment in a restaurant environment," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 633(C).
- Dramane Sam Idris Kanté & Aissam Jebrane & Anass Bouchnita & Abdelilah Hakim, 2023. "Estimating the Risk of Contracting COVID-19 in Different Settings Using a Multiscale Transmission Dynamics Model," Mathematics, MDPI, vol. 11(1), pages 1-19, January.
- Cui, Hongjun & Xie, Jinping & Zhu, Minqing & Tian, Xiaoyong & Wan, Ce, 2022. "Virus transmission risk of college students in railway station during Post-COVID-19 era: Combining the social force model and the virus transmission model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 608(P1).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Guo, Ren-Yong, 2014. "Simulation of spatial and temporal separation of pedestrian counter flow through a bottleneck," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 415(C), pages 428-439.
- Ziyou Gao & Yunchao Qu & Xingang Li & Jiancheng Long & Hai-Jun Huang, 2014. "Simulating the Dynamic Escape Process in Large Public Places," Operations Research, INFORMS, vol. 62(6), pages 1344-1357, December.
- Hänseler, Flurin S. & Bierlaire, Michel & Farooq, Bilal & Mühlematter, Thomas, 2014. "A macroscopic loading model for time-varying pedestrian flows in public walking areas," Transportation Research Part B: Methodological, Elsevier, vol. 69(C), pages 60-80.
- Liu, Qian, 2018. "The effect of dedicated exit on the evacuation of heterogeneous pedestrians," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 506(C), pages 305-323.
- Johansson, Fredrik & Peterson, Anders & Tapani, Andreas, 2015. "Waiting pedestrians in the social force model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 419(C), pages 95-107.
- Li, Maosheng & Shu, Panpan & Xiao, Yao & Wang, Pu, 2021. "Modeling detour decision combined the tactical and operational layer based on perceived density," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 574(C).
- Heng Wang & Zehao Jiang & Tiandong Xu & Feng Li, 2021. "A Quantitative Approach of Subway Station Passengers’ Heterogeneity of Decision Preference Considering Personality Traits during Emergency Evacuation," Sustainability, MDPI, vol. 13(22), pages 1-14, November.
- Huang, Hai-Jun & Xia, Tian & Tian, Qiong & Liu, Tian-Liang & Wang, Chenlan & Li, Daqing, 2020. "Transportation issues in developing China's urban agglomerations," Transport Policy, Elsevier, vol. 85(C), pages 1-22.
- Haghani, Milad, 2021. "The knowledge domain of crowd dynamics: Anatomy of the field, pioneering studies, temporal trends, influential entities and outside-domain impact," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 580(C).
- Cheng, Zhiyang & Yue, Hao & Zhang, Ning & Zhang, Xu, 2024. "Research on mechanism and simulation for avoiding behavior of individual pedestrian," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 634(C).
- Jiang, Yan-Qun & Zhang, Wei & Zhou, Shu-Guang, 2016. "Comparison study of the reactive and predictive dynamic models for pedestrian flow," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 441(C), pages 51-61.
- Shiwakoti, Nirajan & Sarvi, Majid, 2013. "Understanding pedestrian crowd panic: a review on model organisms approach," Journal of Transport Geography, Elsevier, vol. 26(C), pages 12-17.
- Harrison Hong & Neng Wang & Jinqiang Yang, 2020. "Implications of Stochastic Transmission Rates for Managing Pandemic Risks," NBER Working Papers 27218, National Bureau of Economic Research, Inc.
- Lian, Liping & Song, Weiguo & Yuen, Kwok Kit Richard & Telesca, Luciano, 2018. "Investigating the time evolution of some parameters describing inflow processes of pedestrians in a room," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 507(C), pages 77-88.
- Mohammed Mahmod Shuaib, 2016. "Modeling the Pedestrian Ability of Detecting Lanes and Lane Changing Behavior," Modern Applied Science, Canadian Center of Science and Education, vol. 10(7), pages 1-1, July.
- Zhang, Yihao & Chai, Zhaojie & Lykotrafitis, George, 2021. "Deep reinforcement learning with a particle dynamics environment applied to emergency evacuation of a room with obstacles," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 571(C).
- Ma, Liang & Chen, Bin & Wang, Xiaodong & Zhu, Zhengqiu & Wang, Rongxiao & Qiu, Xiaogang, 2019. "The analysis on the desired speed in social force model using a data driven approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 525(C), pages 894-911.
- Jérôme Adda, 2016.
"Economic Activity and the Spread of Viral Diseases: Evidence from High Frequency Data,"
The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 131(2), pages 891-941.
- Adda, Jérôme, 2015. "Economic Activity and the Spread of Viral Diseases: Evidence from High Frequency Data," IZA Discussion Papers 9326, Institute of Labor Economics (IZA).
- Adda, Jérôme, 2015. "Economic Activity and the Spread of Viral Diseases: Evidence from High Frequency Data," CEPR Discussion Papers 10842, C.E.P.R. Discussion Papers.
- Qingyan Ning & Maosheng Li, 2022. "Modeling Pedestrian Detour Behavior By-Passing Conflict Areas," Sustainability, MDPI, vol. 14(24), pages 1-17, December.
- Haghani, Milad & Sarvi, Majid & Shahhoseini, Zahra, 2019. "When ‘push’ does not come to ‘shove’: Revisiting ‘faster is slower’ in collective egress of human crowds," Transportation Research Part A: Policy and Practice, Elsevier, vol. 122(C), pages 51-69.
More about this item
Keywords
Epidemic spreading; Pedestrian dynamics; Travel demand;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:trapol:v:109:y:2021:i:c:p:12-23. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/30473/description#description .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.