IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v11y2023i1p254-d1024212.html
   My bibliography  Save this article

Estimating the Risk of Contracting COVID-19 in Different Settings Using a Multiscale Transmission Dynamics Model

Author

Listed:
  • Dramane Sam Idris Kanté

    (LAMAI, Faculty of Sciences and Technics, Department of Mathematics, Cadi Ayyad University, Marrakesh 40140, Morocco
    Centrale Casablanca, Complex Systems and Interactions Research Center, Ville Verte, Bouskoura 27182, Morocco)

  • Aissam Jebrane

    (Centrale Casablanca, Complex Systems and Interactions Research Center, Ville Verte, Bouskoura 27182, Morocco)

  • Anass Bouchnita

    (Department of Mathematical Sciences, The University of Texas at El Paso, El Paso, TX 79968, USA)

  • Abdelilah Hakim

    (LAMAI, Faculty of Sciences and Technics, Department of Mathematics, Cadi Ayyad University, Marrakesh 40140, Morocco)

Abstract

Airborne transmission is the dominant route of coronavirus disease 2019 (COVID-19) transmission. The chances of contracting COVID-19 in a particular situation depend on the local demographic features, the type of inter-individual interactions, and the compliance with mitigation measures. In this work, we develop a multiscale framework to estimate the individual risk of infection with COVID-19 in different activity areas. The framework is parameterized to describe the motion characteristics of pedestrians in workplaces, schools, shopping centers and other public areas, which makes it suitable to study the risk of infection under specific scenarios. First, we show that exposure to individuals with peak viral loads increases the chances of infection by 99%. Our simulations suggest that the risk of contracting COVID-19 is especially high in workplaces and residential areas. Next, we determine the age groups that are most susceptible to infection in each location. Then, we show that if 50% of the population wears face masks, this will reduce the chances of infection by 8%, 32%, or 45%, depending on the type of the used mask. Finally, our simulations suggest that compliance with social distancing reduces the risk of infection by 19%. Our framework provides a tool that assesses the location-specific risk of infection and helps determine the most effective behavioral measures that protect vulnerable individuals.

Suggested Citation

  • Dramane Sam Idris Kanté & Aissam Jebrane & Anass Bouchnita & Abdelilah Hakim, 2023. "Estimating the Risk of Contracting COVID-19 in Different Settings Using a Multiscale Transmission Dynamics Model," Mathematics, MDPI, vol. 11(1), pages 1-19, January.
  • Handle: RePEc:gam:jmathe:v:11:y:2023:i:1:p:254-:d:1024212
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/11/1/254/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/11/1/254/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Dennis M. Feehan & Ayesha S. Mahmud, 2021. "Quantifying population contact patterns in the United States during the COVID-19 pandemic," Nature Communications, Nature, vol. 12(1), pages 1-9, December.
    2. Bouchnita, Anass & Jebrane, Aissam, 2020. "A hybrid multi-scale model of COVID-19 transmission dynamics to assess the potential of non-pharmaceutical interventions," Chaos, Solitons & Fractals, Elsevier, vol. 138(C).
    3. Xiao, Yao & Yang, Mofeng & Zhu, Zheng & Yang, Hai & Zhang, Lei & Ghader, Sepehr, 2021. "Modeling indoor-level non-pharmaceutical interventions during the COVID-19 pandemic: A pedestrian dynamics-based microscopic simulation approach," Transport Policy, Elsevier, vol. 109(C), pages 12-23.
    4. Bosina, Ernst & Weidmann, Ulrich, 2017. "Estimating pedestrian speed using aggregated literature data," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 468(C), pages 1-29.
    5. Dirk Helbing & Illés Farkas & Tamás Vicsek, 2000. "Simulating dynamical features of escape panic," Nature, Nature, vol. 407(6803), pages 487-490, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. González-Parra, Gilberto & Villanueva-Oller, Javier & Navarro-González, F.J. & Ceberio, Josu & Luebben, Giulia, 2024. "A network-based model to assess vaccination strategies for the COVID-19 pandemic by using Bayesian optimization," Chaos, Solitons & Fractals, Elsevier, vol. 181(C).
    2. Tierry Mitonsou Hounkonnou & Laure Gouba, 2024. "Differential Equations and Applications to COVID-19," Mathematics, MDPI, vol. 12(17), pages 1-15, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cui, Hongjun & Xie, Jinping & Zhu, Minqing & Tian, Xiaoyong & Wan, Ce, 2022. "Virus transmission risk of college students in railway station during Post-COVID-19 era: Combining the social force model and the virus transmission model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 608(P1).
    2. Haghani, Milad, 2021. "The knowledge domain of crowd dynamics: Anatomy of the field, pioneering studies, temporal trends, influential entities and outside-domain impact," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 580(C).
    3. Unchitta Kan & Jericho McLeod & Eduardo López, 2024. "Non-coresident family as a driver of migration change in a crisis: the case of the COVID-19 pandemic," Palgrave Communications, Palgrave Macmillan, vol. 11(1), pages 1-11, December.
    4. Stock, Eduardo Velasco & da Silva, Roberto, 2023. "Lattice gas model to describe a nightclub dynamics," Chaos, Solitons & Fractals, Elsevier, vol. 168(C).
    5. Varas, A. & Cornejo, M.D. & Mainemer, D. & Toledo, B. & Rogan, J. & Muñoz, V. & Valdivia, J.A., 2007. "Cellular automaton model for evacuation process with obstacles," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 382(2), pages 631-642.
    6. Murilo S Baptista & Hai-Peng Ren & Johen C M Swarts & Rodrigo Carareto & Henk Nijmeijer & Celso Grebogi, 2012. "Collective Almost Synchronisation in Complex Networks," PLOS ONE, Public Library of Science, vol. 7(11), pages 1-11, November.
    7. Xianing Wang & Zhan Zhang & Ying Wang & Jun Yang & Linjun Lu, 2022. "A Study on Safety Evaluation of Pedestrian Flows Based on Partial Impact Dynamics by Real-Time Data in Subway Stations," Sustainability, MDPI, vol. 14(16), pages 1-19, August.
    8. Chen, Changkun & Sun, Huakai & Lei, Peng & Zhao, Dongyue & Shi, Congling, 2021. "An extended model for crowd evacuation considering pedestrian panic in artificial attack," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 571(C).
    9. Michael Batty & Jake Desyllas & Elspeth Duxbury, 2003. "Safety in Numbers? Modelling Crowds and Designing Control for the Notting Hill Carnival," Urban Studies, Urban Studies Journal Limited, vol. 40(8), pages 1573-1590, July.
    10. Ma, Jian & Song, Wei-guo & Zhang, Jun & Lo, Siu-ming & Liao, Guang-xuan, 2010. "k-Nearest-Neighbor interaction induced self-organized pedestrian counter flow," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(10), pages 2101-2117.
    11. Illés J Farkas & Shuohong Wang, 2018. "Spatial flocking: Control by speed, distance, noise and delay," PLOS ONE, Public Library of Science, vol. 13(5), pages 1-12, May.
    12. Zheng, Yaochen & Chen, Jianqiao & Wei, Junhong & Guo, Xiwei, 2012. "Modeling of pedestrian evacuation based on the particle swarm optimization algorithm," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(17), pages 4225-4233.
    13. Yue, Hao & Zhang, Junyao & Chen, Wenxin & Wu, Xinsen & Zhang, Xu & Shao, Chunfu, 2021. "Simulation of the influence of spatial obstacles on evacuation pedestrian flow in walking facilities," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 571(C).
    14. Sungryong Bae & Jun-Ho Choi & Hong Sun Ryou, 2020. "Modification of Interaction Forces between Smoke and Evacuees," Energies, MDPI, vol. 13(16), pages 1-10, August.
    15. Lasse Pedersen, 2009. "When Everyone Runs for the Exit," International Journal of Central Banking, International Journal of Central Banking, vol. 5(4), pages 177-199, December.
    16. Shiwakoti, Nirajan & Sarvi, Majid, 2013. "Understanding pedestrian crowd panic: a review on model organisms approach," Journal of Transport Geography, Elsevier, vol. 26(C), pages 12-17.
    17. Ofer Tchernichovski & Marissa King & Peter Brinkmann & Xanadu Halkias & Daniel Fimiarz & Laurent Mars & Dalton Conley, 2017. "Tradeoff Between Distributed Social Learning and Herding Effect in Online Rating Systems," SAGE Open, , vol. 7(1), pages 21582440176, February.
    18. Krbálek, Milan & Hrabák, Pavel & Bukáček, Marek, 2018. "Pedestrian headways — Reflection of territorial social forces," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 490(C), pages 38-49.
    19. Natalie Fridman & Gal A. Kaminka, 2010. "Modeling pedestrian crowd behavior based on a cognitive model of social comparison theory," Computational and Mathematical Organization Theory, Springer, vol. 16(4), pages 348-372, December.
    20. Dirk Helbing & Pratik Mukerji, "undated". "Crowd Disasters as Systemic Failures: Analysis of the Love Parade Disaster," Working Papers ETH-RC-12-010, ETH Zurich, Chair of Systems Design.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:11:y:2023:i:1:p:254-:d:1024212. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.