IDEAS home Printed from https://ideas.repec.org/a/eee/jotrge/v26y2013icp12-17.html
   My bibliography  Save this article

Understanding pedestrian crowd panic: a review on model organisms approach

Author

Listed:
  • Shiwakoti, Nirajan
  • Sarvi, Majid

Abstract

Understanding how crowds behave during collective displacement is at the heart of both pedestrian traffic engineering and ‘movement ecology’. Perhaps the most critical reason for studying collective human dynamics under emergency/panic conditions is the lack of complementary data to develop and validate an explanatory model. A little used alternative is to study non-human model organisms. In this paper, we review experiences in using non-human organisms to study crowd panic in the literature. We then highlight the potential contribution that research with biological entities could make to understand the complex pedestrian behaviour and the enhancement of pedestrian safety during emergency/panic conditions. We also emphasise that understanding of behavioural similarities and dissimilarities between humans and animals is required for developing a good experimental design aimed to study collective behaviour. A generic model that could describe the common underlying mechanisms of crowd behaviour among organisms of different body sizes is identified as future challenge.

Suggested Citation

  • Shiwakoti, Nirajan & Sarvi, Majid, 2013. "Understanding pedestrian crowd panic: a review on model organisms approach," Journal of Transport Geography, Elsevier, vol. 26(C), pages 12-17.
  • Handle: RePEc:eee:jotrge:v:26:y:2013:i:c:p:12-17
    DOI: 10.1016/j.jtrangeo.2012.08.002
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S096669231200213X
    Download Restriction: no

    File URL: https://libkey.io/10.1016/j.jtrangeo.2012.08.002?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Dirk Helbing & Illés Farkas & Tamás Vicsek, 2000. "Simulating dynamical features of escape panic," Nature, Nature, vol. 407(6803), pages 487-490, September.
    2. Shiwakoti, Nirajan & Sarvi, Majid & Rose, Geoff & Burd, Martin, 2011. "Animal dynamics based approach for modeling pedestrian crowd egress under panic conditions," Transportation Research Part B: Methodological, Elsevier, vol. 45(9), pages 1433-1449.
    3. Audrey Dussutour & Vincent Fourcassié & Dirk Helbing & Jean-Louis Deneubourg, 2004. "Optimal traffic organization in ants under crowded conditions," Nature, Nature, vol. 428(6978), pages 70-73, March.
    4. Dirk Helbing & Lubos Buzna & Anders Johansson & Torsten Werner, 2005. "Self-Organized Pedestrian Crowd Dynamics: Experiments, Simulations, and Design Solutions," Transportation Science, INFORMS, vol. 39(1), pages 1-24, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chen, Changkun & Sun, Huakai & Lei, Peng & Zhao, Dongyue & Shi, Congling, 2021. "An extended model for crowd evacuation considering pedestrian panic in artificial attack," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 571(C).
    2. Lin, Peng & Ma, Jian & Liu, Tianyang & Ran, Tong & Si, Youliang & Li, Tao, 2016. "An experimental study of the “faster-is-slower” effect using mice under panic," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 452(C), pages 157-166.
    3. Shi, Xiaomeng & Ye, Zhirui & Shiwakoti, Nirajan & Tang, Dounan & Lin, Junkai, 2019. "Examining effect of architectural adjustment on pedestrian crowd flow at bottleneck," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 522(C), pages 350-364.
    4. Haghani, Milad & Sarvi, Majid, 2018. "Crowd behaviour and motion: Empirical methods," Transportation Research Part B: Methodological, Elsevier, vol. 107(C), pages 253-294.
    5. Chen, Juan & Luo, Qian & Wang, Qiao & Lo, Jacqueline T.Y. & Ma, Jian, 2024. "Experimental study on individual and crowd movement features around obstacles with different shape and size," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 645(C).
    6. Shabna SayedMohammed & Anshi Verma & Charitha Dias & Wael Alhajyaseen & Abdulkarim Almukdad & Kayvan Aghabayk, 2022. "Crowd Evacuation through Crossing Configurations: Effect of Crossing Angles and Walking Speeds on Speed Variation and Evacuation Time," Sustainability, MDPI, vol. 14(22), pages 1-21, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shi, Xiaomeng & Xue, Shuqi & Feliciani, Claudio & Shiwakoti, Nirajan & Lin, Junkai & Li, Dawei & Ye, Zhirui, 2021. "Verifying the applicability of a pedestrian simulation model to reproduce the effect of exit design on egress flow under normal and emergency conditions," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 562(C).
    2. Li, Wenhang & Gong, Jianhua & Yu, Ping & Shen, Shen & Li, Rong & Duan, Qishen, 2014. "Simulation and analysis of individual trampling risk during escalator transfers," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 408(C), pages 119-133.
    3. Haghani, Milad, 2021. "The knowledge domain of crowd dynamics: Anatomy of the field, pioneering studies, temporal trends, influential entities and outside-domain impact," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 580(C).
    4. Huang, Zhiren & Wang, Pu & Zhang, Fan & Gao, Jianxi & Schich, Maximilian, 2018. "A mobility network approach to identify and anticipate large crowd gatherings," Transportation Research Part B: Methodological, Elsevier, vol. 114(C), pages 147-170.
    5. Shi, Xiaomeng & Ye, Zhirui & Shiwakoti, Nirajan & Tang, Dounan & Lin, Junkai, 2019. "Examining effect of architectural adjustment on pedestrian crowd flow at bottleneck," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 522(C), pages 350-364.
    6. Shabna SayedMohammed & Anshi Verma & Charitha Dias & Wael Alhajyaseen & Abdulkarim Almukdad & Kayvan Aghabayk, 2022. "Crowd Evacuation through Crossing Configurations: Effect of Crossing Angles and Walking Speeds on Speed Variation and Evacuation Time," Sustainability, MDPI, vol. 14(22), pages 1-21, November.
    7. Chen, Changkun & Sun, Huakai & Lei, Peng & Zhao, Dongyue & Shi, Congling, 2021. "An extended model for crowd evacuation considering pedestrian panic in artificial attack," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 571(C).
    8. Lasse Pedersen, 2009. "When Everyone Runs for the Exit," International Journal of Central Banking, International Journal of Central Banking, vol. 5(4), pages 177-199, December.
    9. Dirk Helbing & Pratik Mukerji, "undated". "Crowd Disasters as Systemic Failures: Analysis of the Love Parade Disaster," Working Papers ETH-RC-12-010, ETH Zurich, Chair of Systems Design.
    10. Lian, Liping & Song, Weiguo & Yuen, Kwok Kit Richard & Telesca, Luciano, 2018. "Investigating the time evolution of some parameters describing inflow processes of pedestrians in a room," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 507(C), pages 77-88.
    11. Chen, Juan & Luo, Qian & Wang, Qiao & Lo, Jacqueline T.Y. & Ma, Jian, 2024. "Experimental study on individual and crowd movement features around obstacles with different shape and size," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 645(C).
    12. Flötteröd, Gunnar & Lämmel, Gregor, 2015. "Bidirectional pedestrian fundamental diagram," Transportation Research Part B: Methodological, Elsevier, vol. 71(C), pages 194-212.
    13. Saberi, Meead & Aghabayk, Kayvan & Sobhani, Amir, 2015. "Spatial fluctuations of pedestrian velocities in bidirectional streams: Exploring the effects of self-organization," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 434(C), pages 120-128.
    14. Ma, Liang & Chen, Bin & Wang, Xiaodong & Zhu, Zhengqiu & Wang, Rongxiao & Qiu, Xiaogang, 2019. "The analysis on the desired speed in social force model using a data driven approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 525(C), pages 894-911.
    15. Xiao, Yao & Yang, Mofeng & Zhu, Zheng & Yang, Hai & Zhang, Lei & Ghader, Sepehr, 2021. "Modeling indoor-level non-pharmaceutical interventions during the COVID-19 pandemic: A pedestrian dynamics-based microscopic simulation approach," Transport Policy, Elsevier, vol. 109(C), pages 12-23.
    16. Jiang, Yan-Qun & Zhou, Shu-Guang & Duan, Ya-Li & Huang, Xiao-Qian, 2023. "A viscous continuum model with smoke effect for pedestrian evacuation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 621(C).
    17. Guo, Ren-Yong, 2014. "Simulation of spatial and temporal separation of pedestrian counter flow through a bottleneck," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 415(C), pages 428-439.
    18. Ma, Wanjing & Li, Li & Wang, Yinhai, 2016. "A driving force model for non-strict priority crossing behaviors of right-turn driversAuthor-Name: Lin, Dianchao," Transportation Research Part B: Methodological, Elsevier, vol. 83(C), pages 230-244.
    19. Xiaolin Yang & Zhongliang Wu, 2013. "Civilian monitoring video records for earthquake intensity: a potentially unbiased online information source of macro-seismology," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 65(3), pages 1765-1781, February.
    20. Ziyou Gao & Yunchao Qu & Xingang Li & Jiancheng Long & Hai-Jun Huang, 2014. "Simulating the Dynamic Escape Process in Large Public Places," Operations Research, INFORMS, vol. 62(6), pages 1344-1357, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jotrge:v:26:y:2013:i:c:p:12-17. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/journal-of-transport-geography .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.