IDEAS home Printed from https://ideas.repec.org/a/eee/transe/v143y2020ics1366554520307535.html
   My bibliography  Save this article

Scaling GPS trajectories to match point traffic counts: A convex programming approach and Utah case study

Author

Listed:
  • Miller, Seth
  • Laan, Zachary Vander
  • Marković, Nikola

Abstract

This paper considers the problem of inferring statewide traffic patterns by scaling massive GPS trajectory data, which capture about 3% of the overall traffic in Utah. It proposes a least absolute deviations model with controlled overfitting to scale 2.3 million trajectories such that resulting data best fit vehicle counts measured by 296 traffic sensors across the state. The proposed model improves on an often-cited approach from the literature and achieves 45% lower error for locations not seen in model training, obtaining 18% median hourly error across all test locations.

Suggested Citation

  • Miller, Seth & Laan, Zachary Vander & Marković, Nikola, 2020. "Scaling GPS trajectories to match point traffic counts: A convex programming approach and Utah case study," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 143(C).
  • Handle: RePEc:eee:transe:v:143:y:2020:i:c:s1366554520307535
    DOI: 10.1016/j.tre.2020.102105
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1366554520307535
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.tre.2020.102105?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Shao, Hu & Lam, William H.K. & Sumalee, Agachai & Chen, Anthony & Hazelton, Martin L., 2014. "Estimation of mean and covariance of peak hour origin–destination demands from day-to-day traffic counts," Transportation Research Part B: Methodological, Elsevier, vol. 68(C), pages 52-75.
    2. Hazelton, Martin L., 2000. "Estimation of origin-destination matrices from link flows on uncongested networks," Transportation Research Part B: Methodological, Elsevier, vol. 34(7), pages 549-566, September.
    3. Hadavi, Majid & Shafahi, Yousef, 2016. "Vehicle identification sensor models for origin–destination estimation," Transportation Research Part B: Methodological, Elsevier, vol. 89(C), pages 82-106.
    4. Xie, Chi & Kockelman, Kara M. & Waller, S. Travis, 2011. "A maximum entropy-least squares estimator for elastic origin–destination trip matrix estimation," Transportation Research Part B: Methodological, Elsevier, vol. 45(9), pages 1465-1482.
    5. Fan Yang & Zhenxing Yao & Fan Ding & Huachun Tan & Bin Ran, 2019. "Understanding Urban Mobility Pattern with Cellular Phone Data: A Case Study of Residents and Travelers in Nanjing," Sustainability, MDPI, vol. 11(19), pages 1-17, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Owais, Mahmoud & Moussa, Ghada S. & Hussain, Khaled F., 2019. "Sensor location model for O/D estimation: Multi-criteria meta-heuristics approach," Operations Research Perspectives, Elsevier, vol. 6(C).
    2. Yang, Yudi & Fan, Yueyue & Royset, Johannes O., 2019. "Estimating probability distributions of travel demand on a congested network," Transportation Research Part B: Methodological, Elsevier, vol. 122(C), pages 265-286.
    3. Fan, Yueyue & Yang, Han & Maheshwari, Saurabh & Yang, Yudi, 2020. "Improving Transportation Information Resilience: Error Estimation for Networked Sensor Data," Institute of Transportation Studies, Working Paper Series qt3t15p3cs, Institute of Transportation Studies, UC Davis.
    4. Salari, Mostafa & Kattan, Lina & Lam, William H.K. & Lo, H.P. & Esfeh, Mohammad Ansari, 2019. "Optimization of traffic sensor location for complete link flow observability in traffic network considering sensor failure," Transportation Research Part B: Methodological, Elsevier, vol. 121(C), pages 216-251.
    5. Castillo, Enrique & Menéndez, José María & Sánchez-Cambronero, Santos, 2008. "Predicting traffic flow using Bayesian networks," Transportation Research Part B: Methodological, Elsevier, vol. 42(5), pages 482-509, June.
    6. Tangjian Wei & Feng Shi & Guangming Xu, 2019. "Estimation of Time-Varying Passenger Demand for High Speed Rail System," Complexity, Hindawi, vol. 2019, pages 1-24, March.
    7. Shao, Hu & Lam, William H.K. & Sumalee, Agachai & Chen, Anthony & Hazelton, Martin L., 2014. "Estimation of mean and covariance of peak hour origin–destination demands from day-to-day traffic counts," Transportation Research Part B: Methodological, Elsevier, vol. 68(C), pages 52-75.
    8. Michel Bierlaire & Frank Crittin, 2006. "Solving Noisy, Large-Scale Fixed-Point Problems and Systems of Nonlinear Equations," Transportation Science, INFORMS, vol. 40(1), pages 44-63, February.
    9. Abdullah Alshehri & Mahmoud Owais & Jayadev Gyani & Mishal H. Aljarbou & Saleh Alsulamy, 2023. "Residual Neural Networks for Origin–Destination Trip Matrix Estimation from Traffic Sensor Information," Sustainability, MDPI, vol. 15(13), pages 1-21, June.
    10. Anselmo Ramalho Pitombeira-Neto & Carlos Felipe Grangeiro Loureiro & Luis Eduardo Carvalho, 2020. "A Dynamic Hierarchical Bayesian Model for the Estimation of day-to-day Origin-destination Flows in Transportation Networks," Networks and Spatial Economics, Springer, vol. 20(2), pages 499-527, June.
    11. Flurin S. Hänseler & Nicholas A. Molyneaux & Michel Bierlaire, 2017. "Estimation of Pedestrian Origin-Destination Demand in Train Stations," Transportation Science, INFORMS, vol. 51(3), pages 981-997, August.
    12. Mínguez, R. & Sánchez-Cambronero, S. & Castillo, E. & Jiménez, P., 2010. "Optimal traffic plate scanning location for OD trip matrix and route estimation in road networks," Transportation Research Part B: Methodological, Elsevier, vol. 44(2), pages 282-298, February.
    13. Chi Xie & Jennifer Duthie, 2015. "An Excess-Demand Dynamic Traffic Assignment Approach for Inferring Origin-Destination Trip Matrices," Networks and Spatial Economics, Springer, vol. 15(4), pages 947-979, December.
    14. Fu, Hao & Lam, William H.K. & Shao, Hu & Kattan, Lina & Salari, Mostafa, 2022. "Optimization of multi-type traffic sensor locations for estimation of multi-period origin-destination demands with covariance effects," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 157(C).
    15. Bar-Gera, Hillel & Boyce, David & Nie, Yu (Marco), 2012. "User-equilibrium route flows and the condition of proportionality," Transportation Research Part B: Methodological, Elsevier, vol. 46(3), pages 440-462.
    16. Li, Tao & Wan, Yan, 2019. "Estimating the geographic distribution of originating air travel demand using a bi-level optimization model," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 131(C), pages 267-291.
    17. Jafari, Ehsan & Pandey, Venktesh & Boyles, Stephen D., 2017. "A decomposition approach to the static traffic assignment problem," Transportation Research Part B: Methodological, Elsevier, vol. 105(C), pages 270-296.
    18. Castillo, Enrique & Menéndez, José María & Jiménez, Pilar, 2008. "Trip matrix and path flow reconstruction and estimation based on plate scanning and link observations," Transportation Research Part B: Methodological, Elsevier, vol. 42(5), pages 455-481, June.
    19. Fu, Hao & Lam, William H.K. & Shao, Hu & Ma, Wei & Chen, Bi Yu & Ho, H.W., 2022. "Optimization of multi-type sensor locations for simultaneous estimation of origin-destination demands and link travel times with covariance effects," Transportation Research Part B: Methodological, Elsevier, vol. 166(C), pages 19-47.
    20. Hazelton, Martin L., 2003. "Some comments on origin-destination matrix estimation," Transportation Research Part A: Policy and Practice, Elsevier, vol. 37(10), pages 811-822, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transe:v:143:y:2020:i:c:s1366554520307535. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600244/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.