IDEAS home Printed from https://ideas.repec.org/a/eee/transb/v134y2020icp41-63.html
   My bibliography  Save this article

Path-based system optimal dynamic traffic assignment: A subgradient approach

Author

Listed:
  • Zhang, Pinchao
  • Qian, Sean

Abstract

The system-optimal dynamic traffic assignment (SO-DTA) problem aims at solving for the time-dependent link and path flow of a network that yields the minimal total system cost, provided with the Origin-Destination (O-D) demand. The key to solving the path-based formulation of SO-DTA is to efficiently compute the path marginal cost (PMC). Existing studies implicitly assume that the total system cost (TC) is always differentiable with respect to the path flow when computing PMC. We show that the TC could be non-differentiable with respect to the link/path flow in some cases, especially when the flow is close or under the SO conditions. Overlooking this fact can lead to convergence failure or incorrect solutions while numerically solving the SO-DTA problem. In this paper we demonstrate when the TC would be indifferentiable and how to compute the subgradients, namely the lower and upper limit of path marginal costs. We examine the relations between the discontinuity of PMC and the SO conditions, develop PMC-based necessary conditions for SO solutions, and finally design heuristic solution algorithms for solving SO in general networks with multi-origin-multi-destination OD demands. Those algorithms are tested and compared to existing algorithms in four numerical experiments, two toy networks where we compare analytical solutions with numerical solutions, one small network and one sizable real-world network. We show that the proposed heuristic algorithms outperform existing ones, in terms of both the total TC, convergence, and the resultant path/link flow.

Suggested Citation

  • Zhang, Pinchao & Qian, Sean, 2020. "Path-based system optimal dynamic traffic assignment: A subgradient approach," Transportation Research Part B: Methodological, Elsevier, vol. 134(C), pages 41-63.
  • Handle: RePEc:eee:transb:v:134:y:2020:i:c:p:41-63
    DOI: 10.1016/j.trb.2020.02.004
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0191261518311561
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.trb.2020.02.004?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Lu, Chung-Cheng & Liu, Jiangtao & Qu, Yunchao & Peeta, Srinivas & Rouphail, Nagui M. & Zhou, Xuesong, 2016. "Eco-system optimal time-dependent flow assignment in a congested network," Transportation Research Part B: Methodological, Elsevier, vol. 94(C), pages 217-239.
    2. Deepak K. Merchant & George L. Nemhauser, 1978. "Optimality Conditions for a Dynamic Traffic Assignment Model," Transportation Science, INFORMS, vol. 12(3), pages 200-207, August.
    3. Byung-Wook Wie & Roger L. Tobin & Terry L. Friesz, 1994. "The Augmented Lagrangian Method for Solving Dynamic Network Traffic Assignment Models in Discrete Time," Transportation Science, INFORMS, vol. 28(3), pages 204-220, August.
    4. Malachy Carey, 1987. "Optimal Time-Varying Flows on Congested Networks," Operations Research, INFORMS, vol. 35(1), pages 58-69, February.
    5. Arnott, R. & de Palma, A. & Lindsey, R., 1990. "Departure time and route choice for the morning commute," Transportation Research Part B: Methodological, Elsevier, vol. 24(3), pages 209-228, June.
    6. Daganzo, Carlos F., 1995. "The cell transmission model, part II: Network traffic," Transportation Research Part B: Methodological, Elsevier, vol. 29(2), pages 79-93, April.
    7. Tampère, Chris M.J. & Corthout, Ruben & Cattrysse, Dirk & Immers, Lambertus H., 2011. "A generic class of first order node models for dynamic macroscopic simulation of traffic flows," Transportation Research Part B: Methodological, Elsevier, vol. 45(1), pages 289-309, January.
    8. Terry L. Friesz & Javier Luque & Roger L. Tobin & Byung-Wook Wie, 1989. "Dynamic Network Traffic Assignment Considered as a Continuous Time Optimal Control Problem," Operations Research, INFORMS, vol. 37(6), pages 893-901, December.
    9. Vickrey, William S, 1969. "Congestion Theory and Transport Investment," American Economic Review, American Economic Association, vol. 59(2), pages 251-260, May.
    10. Ma, Rui & Ban, Xuegang (Jeff) & Szeto, W.Y., 2017. "Emission modeling and pricing on single-destination dynamic traffic networks," Transportation Research Part B: Methodological, Elsevier, vol. 100(C), pages 255-283.
    11. Muñoz, Juan Carlos & Laval, Jorge A., 2006. "System optimum dynamic traffic assignment graphical solution method for a congested freeway and one destination," Transportation Research Part B: Methodological, Elsevier, vol. 40(1), pages 1-15, January.
    12. Athanasios K. Ziliaskopoulos, 2000. "A Linear Programming Model for the Single Destination System Optimum Dynamic Traffic Assignment Problem," Transportation Science, INFORMS, vol. 34(1), pages 37-49, February.
    13. Carey, Malachy, 1992. "Nonconvexity of the dynamic traffic assignment problem," Transportation Research Part B: Methodological, Elsevier, vol. 26(2), pages 127-133, April.
    14. MERCHANT, Deepak K. & NEMHAUSER, George L., 1978. "A model and an algorithm for the dynamic traffic assignment problems," LIDAM Reprints CORE 346, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    15. Daganzo, Carlos F., 1994. "The cell transmission model: A dynamic representation of highway traffic consistent with the hydrodynamic theory," Transportation Research Part B: Methodological, Elsevier, vol. 28(4), pages 269-287, August.
    16. Ghali, M. O. & Smith, M. J., 1995. "A model for the dynamic system optimum traffic assignment problem," Transportation Research Part B: Methodological, Elsevier, vol. 29(3), pages 155-170, June.
    17. Long, Jiancheng & Wang, Chao & Szeto, W.Y., 2018. "Dynamic system optimum simultaneous route and departure time choice problems: Intersection-movement-based formulations and comparisons," Transportation Research Part B: Methodological, Elsevier, vol. 115(C), pages 166-206.
    18. Ma, Rui & Ban, Xuegang (Jeff) & Pang, Jong-Shi, 2014. "Continuous-time dynamic system optimum for single-destination traffic networks with queue spillbacks," Transportation Research Part B: Methodological, Elsevier, vol. 68(C), pages 98-122.
    19. Jiancheng Long & Wai Yuen Szeto, 2019. "Link-Based System Optimum Dynamic Traffic Assignment Problems in General Networks," Operations Research, INFORMS, vol. 67(1), pages 167-182, January.
    20. Deepak K. Merchant & George L. Nemhauser, 1978. "A Model and an Algorithm for the Dynamic Traffic Assignment Problems," Transportation Science, INFORMS, vol. 12(3), pages 183-199, August.
    21. Yu Nie & H. Zhang, 2010. "Solving the Dynamic User Optimal Assignment Problem Considering Queue Spillback," Networks and Spatial Economics, Springer, vol. 10(1), pages 49-71, March.
    22. MERCHANT, Deepak K. & NEMHAUSER, George L., 1978. "Optimality conditions for a dynamic traffic assignment model," LIDAM Reprints CORE 345, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Violeta Lukic Vujadinovic & Aleksandar Damnjanovic & Aleksandar Cakic & Dragan R. Petkovic & Marijana Prelevic & Vladan Pantovic & Mirjana Stojanovic & Dejan Vidojevic & Djordje Vranjes & Istvan Bodol, 2024. "AI-Driven Approach for Enhancing Sustainability in Urban Public Transportation," Sustainability, MDPI, vol. 16(17), pages 1-18, September.
    2. Satsukawa, Koki & Wada, Kentaro & Watling, David, 2022. "Dynamic system optimal traffic assignment with atomic users: Convergence and stability," Transportation Research Part B: Methodological, Elsevier, vol. 155(C), pages 188-209.
    3. Tidswell, J. & Downward, A. & Thielen, C. & Raith, A., 2021. "Minimising emissions in traffic assignment with non-monotonic arc costs," Transportation Research Part B: Methodological, Elsevier, vol. 153(C), pages 70-90.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lu, Chung-Cheng & Liu, Jiangtao & Qu, Yunchao & Peeta, Srinivas & Rouphail, Nagui M. & Zhou, Xuesong, 2016. "Eco-system optimal time-dependent flow assignment in a congested network," Transportation Research Part B: Methodological, Elsevier, vol. 94(C), pages 217-239.
    2. Nie, Yu (Marco), 2011. "A cell-based Merchant-Nemhauser model for the system optimum dynamic traffic assignment problem," Transportation Research Part B: Methodological, Elsevier, vol. 45(2), pages 329-342, February.
    3. Lu, Gongyuan & Nie, Yu(Marco) & Liu, Xiaobo & Li, Denghui, 2019. "Trajectory-based traffic management inside an autonomous vehicle zone," Transportation Research Part B: Methodological, Elsevier, vol. 120(C), pages 76-98.
    4. Shen, Wei & Zhang, H.M., 2009. "On the morning commute problem in a corridor network with multiple bottlenecks: Its system-optimal traffic flow patterns and the realizing tolling scheme," Transportation Research Part B: Methodological, Elsevier, vol. 43(3), pages 267-284, March.
    5. Satsukawa, Koki & Wada, Kentaro & Watling, David, 2022. "Dynamic system optimal traffic assignment with atomic users: Convergence and stability," Transportation Research Part B: Methodological, Elsevier, vol. 155(C), pages 188-209.
    6. Zhao, Chuan-Lin & Leclercq, Ludovic, 2018. "Graphical solution for system optimum dynamic traffic assignment with day-based incentive routing strategies," Transportation Research Part B: Methodological, Elsevier, vol. 117(PA), pages 87-100.
    7. Long, Jiancheng & Wang, Chao & Szeto, W.Y., 2018. "Dynamic system optimum simultaneous route and departure time choice problems: Intersection-movement-based formulations and comparisons," Transportation Research Part B: Methodological, Elsevier, vol. 115(C), pages 166-206.
    8. Zhu, Feng & Ukkusuri, Satish V., 2017. "Efficient and fair system states in dynamic transportation networks," Transportation Research Part B: Methodological, Elsevier, vol. 104(C), pages 272-289.
    9. S. Waller & Athanasios Ziliaskopoulos, 2006. "A Combinatorial user optimal dynamic traffic assignment algorithm," Annals of Operations Research, Springer, vol. 144(1), pages 249-261, April.
    10. Tong, C. O. & Wong, S. C., 2000. "A predictive dynamic traffic assignment model in congested capacity-constrained road networks," Transportation Research Part B: Methodological, Elsevier, vol. 34(8), pages 625-644, November.
    11. Shen, Wei & Zhang, H.M., 2014. "System optimal dynamic traffic assignment: Properties and solution procedures in the case of a many-to-one network," Transportation Research Part B: Methodological, Elsevier, vol. 65(C), pages 1-17.
    12. Friesz, Terry L. & Kim, Taeil & Kwon, Changhyun & Rigdon, Matthew A., 2011. "Approximate network loading and dual-time-scale dynamic user equilibrium," Transportation Research Part B: Methodological, Elsevier, vol. 45(1), pages 176-207, January.
    13. Carey, Malachy, 2021. "The cell transmission model with free-flow speeds varying over time or space," Transportation Research Part B: Methodological, Elsevier, vol. 147(C), pages 245-257.
    14. Ukkusuri, Satish V. & Han, Lanshan & Doan, Kien, 2012. "Dynamic user equilibrium with a path based cell transmission model for general traffic networks," Transportation Research Part B: Methodological, Elsevier, vol. 46(10), pages 1657-1684.
    15. Chou, Chang-Chi & Chiang, Wen-Chu & Chen, Albert Y., 2022. "Emergency medical response in mass casualty incidents considering the traffic congestions in proximity on-site and hospital delays," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 158(C).
    16. Long, Jiancheng & Szeto, W.Y. & Gao, Ziyou & Huang, Hai-Jun & Shi, Qin, 2016. "The nonlinear equation system approach to solving dynamic user optimal simultaneous route and departure time choice problems," Transportation Research Part B: Methodological, Elsevier, vol. 83(C), pages 179-206.
    17. Islam, Tarikul & Vu, Hai L. & Hoang, Nam H. & Cricenti, Antonio, 2018. "A linear bus rapid transit with transit signal priority formulation," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 114(C), pages 163-184.
    18. Jiancheng Long & Wai Yuen Szeto, 2019. "Link-Based System Optimum Dynamic Traffic Assignment Problems in General Networks," Operations Research, INFORMS, vol. 67(1), pages 167-182, January.
    19. Ma, Rui & Ban, Xuegang (Jeff) & Pang, Jong-Shi, 2014. "Continuous-time dynamic system optimum for single-destination traffic networks with queue spillbacks," Transportation Research Part B: Methodological, Elsevier, vol. 68(C), pages 98-122.
    20. Chen, Huey-Kuo & Hsueh, Che-Fu, 1998. "A model and an algorithm for the dynamic user-optimal route choice problem," Transportation Research Part B: Methodological, Elsevier, vol. 32(3), pages 219-234, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transb:v:134:y:2020:i:c:p:41-63. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/548/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.