AIS data-driven ship trajectory prediction modelling and analysis based on machine learning and deep learning methods
Author
Abstract
Suggested Citation
DOI: 10.1016/j.tre.2023.103152
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Bai, Xiwen & Hou, Yao & Yang, Dong, 2021. "Choose clean energy or green technology? Empirical evidence from global ships," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 151(C).
- Murray, Brian & Perera, Lokukaluge Prasad, 2021. "An AIS-based deep learning framework for regional ship behavior prediction," Reliability Engineering and System Safety, Elsevier, vol. 215(C).
- Shen, Lixin & Wang, Yaodong & Liu, Kunpeng & Yang, Zaili & Shi, Xiaowen & Yang, Xu & Jing, Ke, 2020. "Synergistic path planning of multi-UAVs for air pollution detection of ships in ports," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 144(C).
- Hu, Yihong & Zhu, Daoli, 2009. "Empirical analysis of the worldwide maritime transportation network," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 388(10), pages 2061-2071.
- Maria Simona Raboaca & Catalin Dumitrescu & Ioana Manta, 2020. "Aircraft Trajectory Tracking Using Radar Equipment with Fuzzy Logic Algorithm," Mathematics, MDPI, vol. 8(2), pages 1-20, February.
- Gao, Dawei & Zhu, Yongsheng & Guedes Soares, C., 2023. "Uncertainty modelling and dynamic risk assessment for long-sequence AIS trajectory based on multivariate Gaussian Process," Reliability Engineering and System Safety, Elsevier, vol. 230(C).
- Zhang, Mingyang & Kujala, Pentti & Hirdaris, Spyros, 2022. "A machine learning method for the evaluation of ship grounding risk in real operational conditions," Reliability Engineering and System Safety, Elsevier, vol. 226(C).
- Yan, Yimo & Chow, Andy H.F. & Ho, Chin Pang & Kuo, Yong-Hong & Wu, Qihao & Ying, Chengshuo, 2022. "Reinforcement learning for logistics and supply chain management: Methodologies, state of the art, and future opportunities," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 162(C).
- Fuentes, Gabriel, 2021. "Generating bunkering statistics from AIS data: A machine learning approach," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 155(C).
- Rong, H. & Teixeira, A.P. & Guedes Soares, C., 2022. "Maritime traffic probabilistic prediction based on ship motion pattern extraction," Reliability Engineering and System Safety, Elsevier, vol. 217(C).
- Dong, Gang & Zheng, Shiyuan & Lee, Paul Tae-Woo, 2018. "The effects of regional port integration: The case of Ningbo-Zhoushan Port," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 120(C), pages 1-15.
- Xin, Xuri & Liu, Kezhong & Loughney, Sean & Wang, Jin & Yang, Zaili, 2023. "Maritime traffic clustering to capture high-risk multi-ship encounters in complex waters," Reliability Engineering and System Safety, Elsevier, vol. 230(C).
- Filom, Siyavash & Amiri, Amir M. & Razavi, Saiedeh, 2022. "Applications of machine learning methods in port operations – A systematic literature review," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 161(C).
- Li, Huanhuan & Ren, Xujie & Yang, Zaili, 2023. "Data-driven Bayesian network for risk analysis of global maritime accidents," Reliability Engineering and System Safety, Elsevier, vol. 230(C).
- Li, Yiliang & Bai, Xiwen & Wang, Qi & Ma, Zhongjun, 2022. "A big data approach to cargo type prediction and its implications for oil trade estimation," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 165(C).
- Xinqiang Chen & Jun Ling & Yongsheng Yang & Hailin Zheng & Pengwen Xiong & Octavian Postolache & Yong Xiong, 2020. "Ship Trajectory Reconstruction from AIS Sensory Data via Data Quality Control and Prediction," Mathematical Problems in Engineering, Hindawi, vol. 2020, pages 1-9, August.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Liu, Jiongjiong & Zhang, Jinfen & Yang, Zaili & Wan, Chengpeng & Zhang, Mingyang, 2024. "A novel data-driven method of ship collision risk evolution evaluation during real encounter situations," Reliability Engineering and System Safety, Elsevier, vol. 249(C).
- Xin, Xuri & Liu, Kezhong & Loughney, Sean & Wang, Jin & Li, Huanhuan & Ekere, Nduka & Yang, Zaili, 2023. "Multi-scale collision risk estimation for maritime traffic in complex port waters," Reliability Engineering and System Safety, Elsevier, vol. 240(C).
- Olusola O. Ajayi & Anish M. Kurien & Karim Djouani & Lamine Dieng, 2024. "4IR Applications in the Transport Industry: Systematic Review of the State of the Art with Respect to Data Collection and Processing Mechanisms," Sustainability, MDPI, vol. 16(17), pages 1-32, August.
- Kuo, Hsin-Tsz & Choi, Tsan-Ming, 2024. "Metaverse in transportation and logistics operations: An AI-supported digital technological framework," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 185(C).
- Li, Huanhuan & Xing, Wenbin & Jiao, Hang & Yang, Zaili & Li, Yan, 2024. "Deep bi-directional information-empowered ship trajectory prediction for maritime autonomous surface ships," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 181(C).
- Zhou, Kaiwen & Xing, Wenbin & Wang, Jingbo & Li, Huanhuan & Yang, Zaili, 2024. "A data-driven risk model for maritime casualty analysis: A global perspective," Reliability Engineering and System Safety, Elsevier, vol. 244(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Li, Huanhuan & Xing, Wenbin & Jiao, Hang & Yang, Zaili & Li, Yan, 2024. "Deep bi-directional information-empowered ship trajectory prediction for maritime autonomous surface ships," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 181(C).
- Xin, Xuri & Liu, Kezhong & Loughney, Sean & Wang, Jin & Li, Huanhuan & Ekere, Nduka & Yang, Zaili, 2023. "Multi-scale collision risk estimation for maritime traffic in complex port waters," Reliability Engineering and System Safety, Elsevier, vol. 240(C).
- Eisuke Watanabe & Ryuichi Shibasaki, 2023. "Extraction of Bunkering Services from Automatic Identification System Data and Their International Comparisons," Sustainability, MDPI, vol. 15(24), pages 1-19, December.
- Ding, Yida & Wandelt, Sebastian & Wu, Guohua & Xu, Yifan & Sun, Xiaoqian, 2023. "Towards efficient airline disruption recovery with reinforcement learning," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 179(C).
- Ghosh, Indranil & De, Arijit, 2024. "Maritime Fuel Price Prediction of European Ports using Least Square Boosting and Facebook Prophet: Additional Insights from Explainable Artificial Intelligence," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 189(C).
- Xin, Xuri & Liu, Kezhong & Loughney, Sean & Wang, Jin & Yang, Zaili, 2023. "Maritime traffic clustering to capture high-risk multi-ship encounters in complex waters," Reliability Engineering and System Safety, Elsevier, vol. 230(C).
- Liu, Jiongjiong & Zhang, Jinfen & Yang, Zaili & Wan, Chengpeng & Zhang, Mingyang, 2024. "A novel data-driven method of ship collision risk evolution evaluation during real encounter situations," Reliability Engineering and System Safety, Elsevier, vol. 249(C).
- Fang, Chao & Han, Zonglei & Wang, Wei & Zio, Enrico, 2023. "Routing UAVs in landslides Monitoring: A neural network heuristic for team orienteering with mandatory visits," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 175(C).
- Gao, Dawei & Zhu, Yongsheng & Yan, Ke & Soares, C. Guedes, 2024. "Deep learning–based framework for regional risk assessment in a multi–ship encounter situation based on the transformer network," Reliability Engineering and System Safety, Elsevier, vol. 241(C).
- Gao, Dawei & Zhu, Yongsheng & Guedes Soares, C., 2023. "Uncertainty modelling and dynamic risk assessment for long-sequence AIS trajectory based on multivariate Gaussian Process," Reliability Engineering and System Safety, Elsevier, vol. 230(C).
- Yang, Ying & Liu, Yang & Li, Guorong & Zhang, Zekun & Liu, Yanbin, 2024. "Harnessing the power of Machine learning for AIS Data-Driven maritime Research: A comprehensive review," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 183(C).
- Hao Xu & Niu Niu & Dongmei Li & Chengjie Wang, 2024. "A Dynamic Evolutionary Analysis of the Vulnerability of Global Food Trade Networks," Sustainability, MDPI, vol. 16(10), pages 1-17, May.
- Paul Tae-Woo Lee & Oh Kyoung Kwon & Xiao Ruan, 2019. "Sustainability Challenges in Maritime Transport and Logistics Industry and Its Way Ahead," Sustainability, MDPI, vol. 11(5), pages 1-9, March.
- Li, Huanhuan & Çelik, Cihad & Bashir, Musa & Zou, Lu & Yang, Zaili, 2024. "Incorporation of a global perspective into data-driven analysis of maritime collision accident risk," Reliability Engineering and System Safety, Elsevier, vol. 249(C).
- He, Xinyu & He, Fang & Li, Lishuai & Zhang, Lei & Xiao, Gang, 2022. "A route network planning method for urban air delivery," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 166(C).
- Raeesi, Ramin & Sahebjamnia, Navid & Mansouri, S. Afshin, 2023. "The synergistic effect of operational research and big data analytics in greening container terminal operations: A review and future directions," European Journal of Operational Research, Elsevier, vol. 310(3), pages 943-973.
- Viljoen, Nadia M. & Joubert, Johan W., 2016. "The vulnerability of the global container shipping network to targeted link disruption," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 462(C), pages 396-409.
- César Ducruet & Hidekazu Itoh & Justin Berli, 2020. "Urban gravity in the global container shipping network," Post-Print halshs-02588449, HAL.
- Jiaguo Liu & Jinxia Zhou & Fan Liu & Xiaohang Yue & Yudan Kong & Xiaoye Wang, 2019. "Interaction Analysis and Sustainable Development Strategy between Port and City: The Case of Liaoning," Sustainability, MDPI, vol. 11(19), pages 1-25, September.
- Xu, Mengqiao & Li, Zhenfu & Shi, Yanlei & Zhang, Xiaoling & Jiang, Shufei, 2015. "Evolution of regional inequality in the global shipping network," Journal of Transport Geography, Elsevier, vol. 44(C), pages 1-12.
More about this item
Keywords
AIS data; Trajectory prediction; Machine learning; Deep learning; Maritime safety;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transe:v:175:y:2023:i:c:s1366554523001400. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600244/description#description .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.