Harnessing the power of Machine learning for AIS Data-Driven maritime Research: A comprehensive review
Author
Abstract
Suggested Citation
DOI: 10.1016/j.tre.2024.103426
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Murray, Brian & Perera, Lokukaluge Prasad, 2021. "An AIS-based deep learning framework for regional ship behavior prediction," Reliability Engineering and System Safety, Elsevier, vol. 215(C).
- Christian, Robby & Kang, Hyun Gook, 2017. "Probabilistic risk assessment on maritime spent nuclear fuel transportation (Part II: Ship collision probability)," Reliability Engineering and System Safety, Elsevier, vol. 164(C), pages 136-149.
- Zhang, Jinfen & Liu, Jiongjiong & Hirdaris, Spyros & Zhang, Mingyang & Tian, Wuliu, 2023. "An interpretable knowledge-based decision support method for ship collision avoidance using AIS data," Reliability Engineering and System Safety, Elsevier, vol. 230(C).
- Jessica H Ford & David Peel & David Kroodsma & Britta Denise Hardesty & Uwe Rosebrock & Chris Wilcox, 2018. "Detecting suspicious activities at sea based on anomalies in Automatic Identification Systems transmissions," PLOS ONE, Public Library of Science, vol. 13(8), pages 1-13, August.
- Dong Yang & Lingxiao Wu & Shuaian Wang & Haiying Jia & Kevin X. Li, 2019. "How big data enriches maritime research – a critical review of Automatic Identification System (AIS) data applications," Transport Reviews, Taylor & Francis Journals, vol. 39(6), pages 755-773, November.
- Andrew Rawson & Mario Brito, 2023. "A survey of the opportunities and challenges of supervised machine learning in maritime risk analysis," Transport Reviews, Taylor & Francis Journals, vol. 43(1), pages 108-130, January.
- Wu, Peng & Partridge, Julius & Bucknall, Richard, 2020. "Cost-effective reinforcement learning energy management for plug-in hybrid fuel cell and battery ships," Applied Energy, Elsevier, vol. 275(C).
- Planakis, Nikolaos & Papalambrou, George & Kyrtatos, Nikolaos, 2022. "Ship energy management system development and experimental evaluation utilizing marine loading cycles based on machine learning techniques," Applied Energy, Elsevier, vol. 307(C).
- Du, Yuquan & Meng, Qiang & Wang, Shuaian & Kuang, Haibo, 2019. "Two-phase optimal solutions for ship speed and trim optimization over a voyage using voyage report data," Transportation Research Part B: Methodological, Elsevier, vol. 122(C), pages 88-114.
- Zhang, Mingyang & Kujala, Pentti & Hirdaris, Spyros, 2022. "A machine learning method for the evaluation of ship grounding risk in real operational conditions," Reliability Engineering and System Safety, Elsevier, vol. 226(C).
- Peter Andersson & Pernilla Ivehammar, 2017. "Dynamic route planning in the Baltic Sea Region – A cost-benefit analysis based on AIS data," Maritime Economics & Logistics, Palgrave Macmillan;International Association of Maritime Economists (IAME), vol. 19(4), pages 631-649, December.
- Luan Thanh Le & Gunwoo Lee & Keun-Sik Park & Hwayoung Kim, 2020. "Neural network-based fuel consumption estimation for container ships in Korea," Maritime Policy & Management, Taylor & Francis Journals, vol. 47(5), pages 615-632, July.
- Ziaul Haque Munim & Mariia Dushenko & Veronica Jaramillo Jimenez & Mohammad Hassan Shakil & Marius Imset, 2020. "Big data and artificial intelligence in the maritime industry: a bibliometric review and future research directions," Maritime Policy & Management, Taylor & Francis Journals, vol. 47(5), pages 577-597, July.
- Yan, Ran & Wang, Shuaian & Psaraftis, Harilaos N., 2021. "Data analytics for fuel consumption management in maritime transportation: Status and perspectives," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 155(C).
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Gu, Bingmei & Liu, Jiaguo & Ye, Xiaoheng & Gong, Yu & Chen, Jihong, 2024. "Data-driven approach for port resilience evaluation," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 186(C).
- Li, Yiming & Sun, Zhuo & Hong, Soondo, 2024. "An exact algorithm for multiple-equipment integrated scheduling in an automated container terminal using a double-cycling strategy," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 186(C).
- Yang, Lan & Hu, Zhiqiang & Wang, Liang & Liu, Yang & He, Jiangbo & Qu, Xiaobo & Zhao, Xiangmo & Fang, Shan, 2024. "Entire route eco-driving method for electric bus based on rule-based reinforcement learning," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 189(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Nguyen, Son & Fu, Xiuju & Ogawa, Daichi & Zheng, Qin, 2023. "An application-oriented testing regime and multi-ship predictive modeling for vessel fuel consumption prediction," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 177(C).
- Yan, Ran & Yang, Dong & Wang, Tianyu & Mo, Haoyu & Wang, Shuaian, 2024. "Improving ship energy efficiency: Models, methods, and applications," Applied Energy, Elsevier, vol. 368(C).
- Zhang, Jinfen & Liu, Jiongjiong & Hirdaris, Spyros & Zhang, Mingyang & Tian, Wuliu, 2023. "An interpretable knowledge-based decision support method for ship collision avoidance using AIS data," Reliability Engineering and System Safety, Elsevier, vol. 230(C).
- Yan, Ran & Wang, Shuaian & Psaraftis, Harilaos N., 2021. "Data analytics for fuel consumption management in maritime transportation: Status and perspectives," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 155(C).
- Xin, Xuri & Liu, Kezhong & Loughney, Sean & Wang, Jin & Li, Huanhuan & Ekere, Nduka & Yang, Zaili, 2023. "Multi-scale collision risk estimation for maritime traffic in complex port waters," Reliability Engineering and System Safety, Elsevier, vol. 240(C).
- Jarosław Ziółkowski & Mateusz Oszczypała & Jerzy Małachowski & Joanna Szkutnik-Rogoż, 2021. "Use of Artificial Neural Networks to Predict Fuel Consumption on the Basis of Technical Parameters of Vehicles," Energies, MDPI, vol. 14(9), pages 1-23, May.
- Xie, Peilin & Tan, Sen & Bazmohammadi, Najmeh & Guerrero, Josep. M. & Vasquez, Juan. C. & Alcala, Jose Matas & Carreño, Jorge El Mariachet, 2022. "A distributed real-time power management scheme for shipboard zonal multi-microgrid system," Applied Energy, Elsevier, vol. 317(C).
- Filom, Siyavash & Amiri, Amir M. & Razavi, Saiedeh, 2022. "Applications of machine learning methods in port operations – A systematic literature review," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 161(C).
- Gil, Mateusz & Kozioł, Paweł & Wróbel, Krzysztof & Montewka, Jakub, 2022. "Know your safety indicator – A determination of merchant vessels Bow Crossing Range based on big data analytics," Reliability Engineering and System Safety, Elsevier, vol. 220(C).
- Xin, Xuri & Liu, Kezhong & Loughney, Sean & Wang, Jin & Yang, Zaili, 2023. "Maritime traffic clustering to capture high-risk multi-ship encounters in complex waters," Reliability Engineering and System Safety, Elsevier, vol. 230(C).
- Gao, Dawei & Zhu, Yongsheng & Guedes Soares, C., 2023. "Uncertainty modelling and dynamic risk assessment for long-sequence AIS trajectory based on multivariate Gaussian Process," Reliability Engineering and System Safety, Elsevier, vol. 230(C).
- Li, Huanhuan & Jiao, Hang & Yang, Zaili, 2023. "AIS data-driven ship trajectory prediction modelling and analysis based on machine learning and deep learning methods," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 175(C).
- Philip Cammin & Jingjing Yu & Stefan Voß, 2023. "Tiered prediction models for port vessel emissions inventories," Flexible Services and Manufacturing Journal, Springer, vol. 35(1), pages 142-169, March.
- Liu, Jiongjiong & Zhang, Jinfen & Yang, Zaili & Wan, Chengpeng & Zhang, Mingyang, 2024. "A novel data-driven method of ship collision risk evolution evaluation during real encounter situations," Reliability Engineering and System Safety, Elsevier, vol. 249(C).
- Asghari, Mohammad & Jaber, Mohamad Y. & Mirzapour Al-e-hashem, S.M.J., 2023. "Coordinating vessel recovery actions: Analysis of disruption management in a liner shipping service," European Journal of Operational Research, Elsevier, vol. 307(2), pages 627-644.
- Xinyu Li & Yi Zuo & Junhao Jiang, 2022. "Application of Regression Analysis Using Broad Learning System for Time-Series Forecast of Ship Fuel Consumption," Sustainability, MDPI, vol. 15(1), pages 1-21, December.
- Carine Dominguez-Péry & Lakshmi Narasimha Raju Vuddaraju & Isabelle Corbett-Etchevers & Rana Tassabehji, 2021. "Reducing maritime accidents in ships by tackling human error: a bibliometric review and research agenda," Journal of Shipping and Trade, Springer, vol. 6(1), pages 1-32, December.
- Xing, Hui & Spence, Stephen & Chen, Hua, 2020. "A comprehensive review on countermeasures for CO2 emissions from ships," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
- Sun, Xiaojun & Yao, Chong & Song, Enzhe & Yang, Qidong & Yang, Xuchang, 2022. "Optimal control of transient processes in marine hybrid propulsion systems: Modeling, optimization and performance enhancement," Applied Energy, Elsevier, vol. 321(C).
- Liu, Hanyou & Fan, Ailong & Li, Yongping & Bucknall, Richard & Chen, Li, 2024. "Hierarchical distributed MPC method for hybrid energy management: A case study of ship with variable operating conditions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PA).
More about this item
Keywords
Maritime research; AIS data; Machine learning; Trajectory prediction; Collision avoidance; Anomaly detection; Energy efficiency;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transe:v:183:y:2024:i:c:s1366554524000164. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600244/description#description .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.